Project Management

Interim Report 1.4.1

[image: image7.jpg]REG et

Cultural Heritage in FREEGional /7 T works

REGNET-IST-2000-26336

Interim Report

	Project acronym
	REGNET
	Contract nr.
	IST-2000-26336

	Type and Number
	Interim Report no. 1.4.1

	Work package
	WP1: Analysis of the State of the Art and Development of Concepts

	Task
	T1.4: Development of the System Specifications

	Date of delivery
	Contractual
	YYYY-MM-DD
	Actual
	2001-06-29

	Code name
	RN_IR141v02_spec
	Version 02 draft (final (

	Objective
	Report

	Distribution Type
	Restricted / Public

	Authors (Partner)
	SI

	Contact Person
	Nikos Karatzoulis

	Abstract
	This document contain Regnet specification. Definition of the functional and technical requirements; definition of the REGNET architecture; identification of Software Components; detailed System Design; definition of hardware, system, and network requirements; identification of tools.
The work carried out within this task is close to standard software development and is based on UML notation and Unified Process.

	Keywords List
	

	Version log
	

Table of Contents

41
Introduction

41.1
Situation

41.2
Purpose

51.3
Overview

52
Requirements [VALT]

62.1
Functional requirements

62.2
Technical requirements

82.3
Integration

83
Uses cases

84
Functional architecture [VALT]

84.1
Tree tiers architectures

94.2
Regnet functional architecture

104.3
Regnet Portal [MOT]

114.4
Data generation [SPAC]

114.5
Search system [AIT]

114.6
E-business [Zeus]

114.7
Cultural heritage data management [Spac]

114.8
Ontology [SI]

124.9
Electronic publisher [SR]

125
Technical architecture [VALT]

125.1
Regnet server architecture

145.2
Regnet clients architecture

145.2.1
Web browsing client [MOT]

145.2.2
Web acquisition client [SPAC]

155.2.3
Embedded clients [MOT]

155.3
Regnet Portal [MOT]

155.4
Data generation [SPAC]

165.5
Search system [AIT]

165.6
E-business [ZEUS]

165.6.1
Domain services [SR]

175.6.2
ECommerce services [ZEUS]

175.6.3
Collaborative services [IMAC]

175.7
Cultural Heritage Data Management [SPAC]

175.8
Ontology system [SI]

185.9
Regnet connector

185.10
User profile

185.11
Internationalisation

186
System architecture and tools [VALT]

186.1
Web browsing client [MOT]

186.2
Web acquisition client [SPAC]

196.3
Embedded clients [MOT]

196.4
Regnet Portal [MOT]

196.5
Data generation [SPAC]

196.6
Search system [AIT]

196.7
E-business [ZEUS]

196.7.1
Domain services [SR]

196.7.2
ECommerce services [ZEUS]

196.7.3
Collaborative services [IMAC]

196.8
Cultural Heritage Data Management [SPAC]

196.9
Ontology system [SI]

196.10
Synthesis

207
Interfaces [ZEUS]

208
Risks [VALT]

209
To do list

2010
References

2111
Appendix

2111.1
J2EE Architecture

2111.1.1
Description

2211.1.2
Presentation tier: JSP, Servlet

2211.1.3
Business Tier: EJB

2311.1.4
Data tier: JDBC

2311.1.5
J2EE application servers

2311.1.6
J2EE resources

2411.2
PHP

2411.3
Web services

2411.3.1
SOAP

2411.3.2
WSDL

2411.3.3
UDDI

2411.3.4
Tools

2411.4
Acronyms

Introduction

1.1 Situation

	
	Analysis
	Detailed Design & Development

	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

1.2 Purpose

The aim of this document is to detail Regnet specification. These specification can be split into two parts :

· Requirement artefacts which captures and presents information used in defining the required capabilities of the system.

· Analysis & Design artifact which captures and presents information related to the solution to the problems posed in the Requirements set.
It is very important to collect user requirements (both functional and technical) which reflect as much as possible the real needs so the functional requirements are based on solid ground.
Process description:

The process uses UML notation and is based on an iterative approach.

The task T1.4 is divided in subtasks.

Each partner should use this process according to the subtask partition.

Step 1: Use Cases and Actors identification. According to REGNET document and to user requirements list coming from tasks T1.1, the exhaustive list of REGNET Actors and Use Cases is establish.

Step 2: Expanding Vision document. Vision document gives an overview of functional aspect of the software as well as marketing elements and technical architecture. Objective of this document is to have a global view of the software based mostly on user and technical requirement on use case basis. Of course, the vision document doesn't give a complete technical architecture but only main aspects of this architecture.

Remark: vision document is establish and detail in IR 1.6.1

Step 3: Iterations definition. Iterations are definied on the basis of Use Case List. Each iteration is based on a sub-set of the use case set.
Step 4: Analysis and design
For each iteration repeat :

Detail Uses cases : that is describe with text interaction between actors and Regnet System.

Analysis : deduce business objects from use case.

EndRepeat

Design

Software architecture is defined in parallel from the technical requirements.

1.3 Overview

The document is organised according to the process described before and to the corresponding technical Annex tasks.

These tasks are:

	Task
	Task leader
	Description

	T1.4
	VALT
	Development of the system specification

	T1.4.1
	MOT
	Node-1: Portal

	T1.4.1.1
	SPAC
	Node-1: Portal – Data generation

	T1.4.1.2
	AIT
	Node-1: Portal – Search System

	T1.4.1.3
	ZEUS
	Node-1: Portal – E-Business

	T1.4.2
	SPAC
	Node-2: Cultural Heritage Data Management

	T1.4.2.1
	SPAC
	Node-2: Cultural Heritage Data Management – Repository Management

	T1.4.2.2
	AIT
	Node-2: Cultural Heritage Data Management – Reference System

	T1.4.3
	ZEUS
	Node-3: eBusiness Data Management

	T1.4.3.1
	ZEUS
	Node-3: eBusiness Data Management – Product catalogue management

	T1.4.3.2
	IMAC
	Node-3: eBusiness Data Management – Procurement, Delivery Invocation

	T1.4.4
	SI
	Node-4: Ontology Checker

	T1.4.4.1
	SI
	Node-4: Ontology Checker – Knowledge base access

	T1.4.5
	SR
	Node-5: Electronic Publisher

	T1.4.5.1
	SR
	Node-5: Electronic Publisher – Electronic Publishing

	T1.4.6
	VALT
	Core System

	T1.4.6.1
	VALT
	Core System - Architecture

	T1.4.6.2
	ZEUS
	Core System - Interfaces

	T1.4.6.3
	VALT
	Core System - Platforms

2 Requirements [VALT]

Software architectures are based on software and technical requirements. The aim of this part is to give a synthesis view of these requirements.

We propose to classify requierements according to the following priorities :

· 1 : high priority. This requirement must be taken into account in the first version of the Regnet system. Regnet V1.0 is the system we will deploy at the end of the first year.

· 2 : middle priority. This requirement will be taken into account in the second version of the system. This version will be elaborate during the second year of the Regnet project.

· 3 : low priority. This requirement should be taken into account in future versions of the Regnet system.

In the following tables we organise requirement in groups. In each group we give references to the requirements according to following rules :

· FR stand for Functional Requirement; TR stand for Technical Requirement.

· Second and third part are respectively group and requirement number.

2.1 Functional requirements
Functional requirements are given by the following table :

	Reference
	Requirement
	Priority
	Comment
	Use Case

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

2.2 Technical requirements

Technical requirements are given by the following table :

	Reference
	Requirement
	Priority
	Comment

	Group 1 : General technical requirement

	TR-01-01
	Client / server architecture
	1
	Client and server parts of the system must be separated.

	TR-01-02
	Exception handling mecanism
	1
	

	TR-01-03
	Distributed architecture
	1
	

	TR-01-04
	Portability
	1
	

	Group 2 : client

	TR-02-01
	Different kinds of client : desktop, Internet browser, Wap device, PDA device
	1
	The architecture will be define with this requirement in mind but for the first version only Internet browser client will be implement.

	TR-02-02
	Automatic deployment
	1
	For heavy clients.

	TR-02-03
	Multi-windows based GUI
	1
	

	
	
	
	

	Group 3 : data management

	TR-03-01
	Back-up stategies
	2
	

	
	
	
	

	Group 4 : performances

	TR-04-01
	Response time: to be specified
	
	Depend on finctionality ?

	TR-04-02
	Number of autorized user: to be specified
	
	

	TR-04-03
	Number of simultaneous user: to be specified
	
	

	TR-04-04
	Scalability
	1
	

	Group 5 : security

	TR-05-01
	Log of system usage
	2
	Can also be used for CRM strategies

	TR-05-02
	Loging password mechanism
	1
	

	TR-05-03
	Group of users
	1
	

	TR-05-04
	Access segregation according to user / group.
	2
	

	TR-05-05
	Secure architecture
	2
	Possibility for the Regnet system to be deploy in a DMZ
. Firewall specificities must be address.

	Group 6 : system management

	TR-06-01
	Emergency system
	2
	Redundant or just exception handling mecanism ?

	TR-06-02
	Statistic analysis
	3
	

	TR-06-03
	Redundant architecture
	3
	

	TR-06-04
	Availability : to be precise
	
	7/24 is very costly.

	
	
	
	

	Group 7 : integration

	TR-07-01
	Connection with Collection Management System from OpenHeritage
	1 or 2 ?
	CH data management ? Which interface ?

	TR-07-02
	Search engine from AIT
	1
	Java / RMI API

	Group 8 : hardware

	TR-08-01
	Client must be supported by any hardware
	1
	GUI based on Internet Browser

	TR-08-02
	Multiple processor system
	3
	

	
	
	
	

	Group 9 : others

	TR-09-01
	Use of free / open-source softwares as far as possible
	1
	

	TR-09-02
	Sofware internationalisation
	1
	This requierement must be taken into account in the architecture definition. The English version will be deploy for the first version.

	TR-09-03
	Dynamic language switching
	2
	

	TR-09-04
	Help online
	2
	

	TR-09-05
	Training courses for system administrator and officials in charge
	2
	

	TR-09-06
	Help desk
	3
	

	TR-09-07
	Technical support: to be specified
	
	

	TR-09-08
	User manual
	1
	

	TR-09-09
	Reference manual
	1
	

2.3 Integration

Different technologies must be integrated in the Regnet system. These technologies come from previous project (eg. Search engine from COVAX) or from OpenHeritage according to the clustering organisation.

Moreover we have to address the fact that partner provides different technical skill. Two groups can be identified: one which is related to PHP, the other to Java platform. Despite the fact that each technologie is more or less adapted to a context we have to define an architecture which provides easy and smoth integration of technologies.

3 Uses cases [VALT]

This part detail uses cases deduce from functional user requirements.

The summary on first results from content providers was classified in four groups of user requirements. The partners involved in each group are also mentioned and in each case the leading partner is highlighted. The identified groups are:
· G0 – General Functions (administrative)

· G1 – Data generation

· G2 – Search System

· G3 – e-Business. Separation of G3:

· 3.1 Presentation

· 3.2 Educational Training

· 3.3 E-Commerce

· 3.4 Events

· 3.5 Services
4 Functional architecture [VALT]

Functional architecture present the Regnet components according to their function. These functions are given by functional requirement.

Regnet system is a market-place dedicated to culturage-heritage domain. It can provide sophisticated collaborative functionalities as:

· Domain virtual directory and information.

· Small advertising (demand and sold) about CH objects.

· Virtual shop on-line in order to sell objects.

· E-procurement in order to get best prices from supplier.

· Auction system in order to sell some objects.

Regnet is a network of collaborative systems. Each Regnet node (museum, library and so on) has a Regnet system which is link with others. It is of the responsibility of each node to maintain data about its object collections.

A user of a Regnet node can get information from local collections but also from collections provided by connected nodes. This mechanism must be as transparent as possible for users. Regnet strength is correlated to this network mechanism.

Regnet architecture will be based on a tree tiers architecture whose advantages are discuss in the first sub-paragraph.

4.1 Tree tiers architectures

From here on we will only refer to 3-tier architecture, that is to say, at least 3-tier architecture.

A tree tiers architecture is a software architecture where we logically and physically separate tree elements :

· The presentation tier: Is responsible for the presentation of data, receiving user events and controlling the user interface.

· The business tier: This tier isn’t present in 2-tier architecture. It contain business-objects that implement the business rules, and are available to the presentation tier. This level now forms the central key to solving 2-tier problems. This tier protects the data from direct access by the clients.

· Data tier: This tier is responsible for data storage. Besides the widespread relational database systems, existing legacy systems databases are often reused here.

It is important to note that boundaries between tiers are logical. It is quite easily possible to run all three tiers on one and the same (physical) machine. The main importance is that the system is neatly structured, and that there is a well planned definition of the software boundaries between the different tiers.

Tree tiers architecture solves a number of problems that are inherent to 2-tier architectures. Naturally it also causes new problems, but these are outweighed by the advantages:

· Clear separation of user-interface-control and data presentation from application-logic. Through this separation more clients are able to have access to a wide variety of server applications. The two main advantages for client-applications are clear: quicker development through the reuse of pre-built business-logic components and a shorter test phase, because the server-components have already been tested.

· Re-definition of the storage strategy won’t influence the clients. RDBMS’ offer a certain independence from storage details for the clients. However, cases like changing table attributes make it necessary to adapt the client’s application. In the future, even radical changes, like let’s say switching form an RDBMS to an OODBS, won’t influence the client. In well designed systems, the client still accesses data over a stable and well designed interface which encapsulates all the storage details.

· Business-objects and data storage should be brought as close together as possible, ideally they should be together physically on the same server. This way - especially with complex accesses - network load is eliminated. The client only receives the results of a calculation - through the business-object, of course.

· In contrast to the 2-tier model, where only data is accessible to the public, business-objects can place applications-logic or "services" on the net.

· As a rule servers are "trusted" systems. Their authorization is simpler than that of thousands of "untrusted" client-PCs. Data protection and security is simpler to obtain. Therefore it makes sense to run critical business processes, that work with security sensitive data, on the server.

· Dynamic load balancing: if bottlenecks in terms of performance occur, the server process can be moved to other servers at runtime.

· Change management: of course it’s easy - and faster - to exchange a component on the server than to furnish numerous PCs with new program versions. It is, however, compulsory that interfaces remain stable and that old client versions are still compatible. In addition such components require a high standard of quality control. This is because low quality components can, at worst, endanger the functions of a whole set of client applications. At best, they will still irritate the systems operator.

· It is relatively simple to use wrapping techniques in 3-tier architecture. As implementation changes are transparent from the viewpoint of the object's client, a forward strategy can be developed to replace legacy system smoothly. First, define the object's interface. However, the functionality is not newly implemented but reused from an existing host application. That is, a request from a client is forwarded to a legacy system and processed and answered there. In a later phase, the old application can be replaced by a modern solution. If it is possible to leave the business object’s interfaces unchanged, the client application remains unaffected. A requirement for wrapping is, however, that a procedure interface in the old application remains existent. It isn’t possible for a business object to emulate a terminal. It is also important for the project planner to be aware that the implementation of wrapping objects can be very complex.

4.2 Regnet functional architecture

A first draft for Regnet functional architecture is given by the following figure :

[image: image1.wmf]

Presentation

External

ressources

Applicative logic

Business objects

Data a

ccess

Middleware

Regnet

Portal

Client

Sessions

Electronic

publishing

Search system

Data Generation

E

-

Business

Ontology checker

eBusiness

data

CH data

Ontology

data

EBusiness

object

CH Objects

Ontology

management

Business

Data

generation

Search

system

E

-

Business

User

profile

Presentation layer

This layer contain functionnalities which are available from the client. It contain only user interfaces necessary for data-generation, search system and E-Business functionnalities.

Different kind of client are available:

· Consultation clients: they only access search and e-business systems. These clients are Internet deployed and can be embedded either into standard web navigator or WAP or PDA devices.

· Acquisition clients: they can both consult and add information into the Regnet system. This information deals with new assets for the eBusiness or CH database.

Business logic layer

This layer can be logicaly separated into three sub-layers:

· Applicative logic which contains objects dedicated to applications. Examples of such objects are session management and user profiles objects.

· Business objects whitch contains “true” business objects which are dedicated to business domain, reusable and often persistant.

· Data access which contains specific objects dedicated to database access (object/relationnal mapping if necessary), transaction and cache management. It is in this sub-layer that one can find adapters usable for communication with legacy or ERP systems.

Externel resources layer
This layer contain local databases as well as externel ressources such as catalogues and data provided by other Regnet nodes.

We have to notice, that despite of the use of the word Portal, this schema cleary split nodes data-generation, search-system and eBusiness into two parts. The first part is dedicated to presentation, the second to business object.

4.3 Regnet Portal [MOT]

Main functionalities of the Regnet Portal.

4.4 Data generation [SPAC]

Main functionalities of the Regnet data generation module.

4.5 Search system [AIT]

Main functionalities of the Regnet search system module.

4.6 E-business [Zeus]

Main functionalities of the Regnet e-business module.

4.7 Cultural heritage data management [Spac]

Main functionalities of the Regnet CH data management module.

4.8 Ontology [SI]

Main functionalities of the Regnet ontology module

An important issue when designing an ontology is setting an appropriate scope. In order to set the initial scope the following questions have to be asked:

What kinds of pages will be annotated?

What sorts of queries can the pages be used to answer?

Who will be the user of the pages?

What kinds of objects are of interest to these users?

What are the interesting relationships between these objects?

The motivation for web ontologies is slightly different from that of traditional ontologies. People rarely query the web searching for abstract concepts or similarities between very disparate concepts, and as such, complex upper ontologies are not necessary.

The most important aspect of the ontology checker system will be the ability to provide users with the information they need. Since we are dealing with an Internet environment, it is important that users can access this information through their web browsers. For this reason the ontology checker system will be developed based on widely accepted composition technologies standards (e.g. Java).

When designing an ontology checker system, the first issue that it is worthwhile to spend time is getting the ontology “right”. By “right”, we mean that it must cover the concepts in the types of pages that are to be used and the ways in which these pages will be accessed.

The ontology checker node is central to the REGNET architecture, as it controls its integrity and to some extent its logic. The knowledge base subsystem that it contains provides the data and the functions to accomplish that. Specifically, its main aspects can include:

· Data: It makes sure that all the data inserted and produced from the system are valid and the metadata derived from them are correctly structured (as in XML metadata).

· Business rules: guarantees that business exchange will be done in a unified way, using a common set of protocols, and that product catalogues of the various museums are structured in a standard manner.

· User profiles: storing a common template to be used for each user profile. Every time a new user logs in, his/her profile is created in a standard way.

· Document types: specifying the formats for the documents throughout the project. For example, certain initial museum data files will be in the CSV (Comma Separated Values) format. This will have to be allowed by the ontology checker, which perhaps will have to include conversion functions whenever the initial document isn’t in the proper format.

· Language tools: it would be useful for commands like the search/retrieve mechanism that language tools were defined in the Ontology Checker Knowledge Base. For example, the existence of a thesaurus could help the end user refine his/her search by typing words close in meaning to the original ones.
The ontology checker will be able to declare:

· Classifications (categories) for data entities. Classifications may inherit from other classifications ("An X painting is French").

· Valid relationships between data entities and other data entities or simple data (strings, numbers, dates, booleans). Arguments for relationships are typed, either by the simple data that can fill the argument, or with the classification a data entity must fall under in order to fill an argument.

· Inferences in the form of horn clauses with no negation ("If a painting belongs to a museum, that painting automatically belongs to any museum or organization the museum is a sub-part of").

· Inheritance from other ontologies: ontologies may be derived from or extend zero or more outside ontologies.

· Versioning. Ontologies may extend previous ontology versions.

HTML pages with embedded ontology checking may:

· Declare arbitrary data entities. Usually, one of these entities is the web page itself.

· Declare the ontologies which they will use when making declarations about entities ("I'm using the 'Regnet Ontology v1. ' promulgated by Regnet").

· Categorize entities ("This entity is a painting").

· Declare relationships between entities or between entities and data.

4.9 Electronic publisher [SR]

Main functionalities of the Regnet electronic publisher module.
5 Technical architecture [VALT]

This part gives some proposition about Regnet technical architecture, both engineering and technolgy point of view. The engineering point of view present an architecture witch is techology independant.

We distinguish in the above paragraph client and server architectures.

5.1 Regnet server architecture

Regnet server architecture must provide an open environment in order to integrate technologies and tools. It must be based on standards in order to facilitate change management.

A first schema displaying the dispach of functionnal modules on a distributed system is shown by the above figure:

[image: image2.wmf]

Web

server

Page

generation

eBusiness

EBusiness

data

Ebusiness

API

Users profiles

Virtual shop

eProcurement

Auction

CH data

Virtual directory

CH data management

CH data

 API

Data acquisition

Data

transformation

Ontology

data

Ontology

Ontology data

management

Regnet Connector

Search

Data acquisition

Search

Ontology

API

This second schema precise borders of each Regent element.

[image: image3.wmf]Directory

and Security

Server

Web

Clients

Regnet

Portal

EBusiness

Server

Connector

Connector

eBusiness

Database

eBusiness

Database

Intranet Network

Regnet

Connector

Regnet

Connector

Regnet

Portal

CH Data Server

Connector

Connector

CH Database

CH Database

Regnet

Connector

Regnet

Connector

Ontology

Server

Connector

Connector

Ontology

Database

Ontology

Database

Embedded

Clients

Regnet

Clients

Internet Network

Regnet

node

Regnet

node

A critical aspect of Regnet architecture is Integration. As mentioned before, we have to integrate heterogeneous technologies and human skills into a distributed architecture. This architecture must provide good capacities in term of evolutivity, scaling and management. In order to build such a system we must based Regnet on a component based framework which accept heterogeneous components. Web services approach provide such framework. The set of concepts and technologies that are related to Web Services are:

· XML: to describe information.

· UDDI: to find the necessary services.

· WSDL: to describe how Web Services work.

· SOAP: to remotely execute Web Services.

Each module provides a WSDL interface which allow others modules to request services. Services are invocated through SOAP protocol.

Detail about Web services are given into technical annex. Tools are available for PHP and Java. This approach provides necessary technologies in order to build Regnet middleware.
Following sub paragraphs will detail each element.

5.2 Regnet clients architecture

As sawn from functional and technical requirements, different kind of client can be distinguish:

· Web light browsing client.

· Web heavy browsing and acquisition client.

· Embedded clients (Wap and PDA).

As far as possible, common functionalities between these tree clients will be factorised in the server side. However there is some specificities notably for acquisition client.

5.2.1 Web browsing client [MOT]

Web browsing client allows to navigate across Regnet Web site in order to access all functionalities exept acquisition.

This client is based on a standard web browser and uses only HTML and JavaScript. Advantages of such architecture are obvious in term of deploiement and standardisation.

HTML pages are generated by the server. JavaScript must only be used in order to do presentation verification from HTML forms.

Risks with this kind of client are:

· To use unstandardised JavaScripts functionalities eg outside ECMA standard (available only for last browsers version).

· To mix bussiness rules and JavaScript.

· To complexify presentation logic in such a way that it becomes very hard to maintain.

To be completed by [MOT].

5.2.2 Web acquisition client [SPAC]

This client is a part of the data-generation module. It provides tools in order to get data and meta-data from user and use them into the Regent Server. These informations are used by the eBusiness module in order to initiate an auction or by the CH module in order to add new elements.

We have to take care that, as far as an upload operation is necessary to carry information from Internet into the Regnet system, security mechanisms must be placed in order to verify data.

Schema of such a client is given below:

[image: image4.wmf]

Web

server

 HTTP

Acquisition Web client architecture

Web browser

Private space

GUI logic

GUI

Data access

Application logic

Remote

treatments

Local treatments

Business

objects

Regnet server

This client is a heavy client so we have to take car not to mixed presentation and applicative treatment. So a logical tree-tiers architecture must be define for the client side.

This client, access to a private space which is local to the computer. User manipulate data from this space and activate the upload only when data are ready. This architecture allow users to work offline the network.

This client uses HTTP in order to communicate with the Regnet server through the Web server. Despite of its low performance, use of HTTP based protocol (SOAP) allows firewall skipping.

This client can be easily develop in Java as an Applet. Java provides very sophisticated APIs (Swing, Java 2D and Java 3D) allowing to develop portable automaticaly deployed client GUI. Data can be upload to the Web server as XML serialized Java objects.

Risks associated with this architecture are:

· Heavy client: we have to avoid classical risks associated with client/server architecture. It means that we must embed into the applet only the necessary business logic. Furthermore we have to define a three tier architecture for the client in order to separate GUI and application logic.

· Java default security sandbox, prevent Applet to access local resources (eg. Disk). In order to allow disk access for the applet, we have to use trust (signed) applet and modified local java security parameter.

· Applet download require time and local installed Java Virtual Machine with the right version. This problems are solve by using the Java plugin (http://java.sun.com/products/plugin/index.html) or Java WebStart (http://java.sun.com/products/javawebstart/index.html). These technologies are available for free from Sun.

Java plugin allows to use any version of JVM instead of the web browser's default virtual machine and provide Applet cache.

Java WebStart allows to build Java client which can automaticaly:
· Detect, install, and use the correct version of the Java Runtime Environment for the application.

· Launch the application from the browser or the desktop.

· Download newer versions of the application as they become available.

· Cache classes used by the application locally for fast startup.

· Run as either an applet or an application.

· Download native libraries if necessary.

· Use local resources, such as the filesystem, in a secure way.

· Locate and load external dependencies.
To be completed by [SPAC].
5.2.3 Embedded clients [MOT]

To be completed by [MOT].
5.3 Regnet Portal [MOT]

Portal provides interface between end user and Regnet system. It belongs to the presentation layer of the application.

Communication between the portal and clients is SOAP based.

Comunication between the portal and others nodes can be either: SOAP in heterogenous context (eg. Java – PHP or PHP – Java) or RMI in homogeneous case (eg. J2EE).

Data transmit beween Portal and back-end elements are XML encapsulated. Portal uses information provided by Ontology system in order to generate presentation according to user profile.

To be completed by [MOT].
5.4 Data generation [SPAC]

To be completed by [SPAC].
5.5 Search system [AIT]

To be completed by [AIT].
5.6 E-business [ZEUS]

This system deal with the implementation of the following functionalities:

· Data management of eBusiness related data. These data are coming from CH data node or from user through the Web acquisition client. Each piece of data can be split into two parts: meta-data and data. Meta-data can be represent with XML notation and are validate by a DTD or schema. These DTD or schema are stored into the ontology node. Data format depend of the represented information.

· Search of eBusiness data.

· Virtual directory and domain forum.

· Virtual shop online.

· Eprocurement.

· Auction.

· Electonic publishing.

Ebusiness system can be split into different components communicating through SOAP. Such an approch allows to integrate elements based on different technolgies (eg. J2EE and PHP). However we must take care that these components share data. This aspect is relevant for the choice of the database technology which must support transactional mode.

I suggest to split this component into following parts as illustrated below:

· Domain services: Virtual directory, domain forum and Electonic publishing.

· ECommerce services: Data management, search and virtual shop.

· Collaborative services: Eprocurement and Auction.

[image: image5.wmf]DB

eBusiness

Database

Server

Client

HTTP

Web

Server

Regnet

Portal

CGI Handling

Server

Collaborative services

Server

Domain services

Server

eCommerce

services

Server

Ontology

Server

Ontology

SOAP/XML

SOAP/XML

SOAP/XML

SOAP/XML

SOAP/XML

5.6.1 Domain services [SR]

This node can be based on J2EE.

To be completed by [SR].

5.6.2 ECommerce services [ZEUS]

This node can be based on PHP.
To be completed by [ZEUS].

5.6.3 Collaborative services [IMAC]

This node can be based on J2EE.

To be completed by [IMAC].
5.7 Cultural Heritage Data Management [SPAC]

To be completed by [SPAC].
5.8 Ontology system [SI]

This section describes the procedural aspects of the Ontology system.

[image: image8.png]nformation
society
technologies

Figure 1. shows the Ontology Server Decomposition.

· A single, comprehensive ontology will be available on the Regnet Website.

· Knowledge providers who wish to make material available to the ontology system, they will have to use a tool (e.g. Knowledge Annotator) to mark-up their pages in a way that these will be integrated to the ontology system.

· The knowledge providers then place the pages on the Web and notify Regnet.

· Then the ontology checker reviews the site and if it meets the ontology standards, adds it to the list of sites (Ontology Data Management) that the search engine allows to visit.

· Java applets on the Regnet Website access the knowledge base to respond to user’s queries or update displays.

5.9 Regnet connector

Regnet connector allows a Regnet system to collaborate with others Regnet system. This connector is based on ebXML techologies.

Regnet connector can be based on Component-X which provides an environment allowing to produce ebXML compliant Java components. These components use a J2EE application server as container framework.

5.10 User profile

User profiles store information about user: security, language, preference, etc. This module can be access by all the other distributed module.

5.11 Internationalisation

Internationalization is the process of designing an application so that it can be adapted to various languages and regions without engineering changes.
Internationalization can be adress in different way depending technology used.

Java provides the internationalisation API wich allows to internationalise a program so that it has the following characteristics:
· With the addition of localization data, the same executable can run worldwide.

· Textual elements, such as status messages and the GUI component labels, are not hardcoded in the program. Instead they are stored outside the source code and retrieved dynamically.

· Support for new languages does not require recompilation.

· Culturally-dependent data, such as dates and currencies, appear in formats that conform to the end user's region and language.

· It can be localized quickly.

6 System architecture and tools [VALT]

This part detail necessary tools for each module.

6.1 Web browsing client [MOT]

To be completed by [MOT].

6.2 Web acquisition client [SPAC]

To be completed by [SPAC].

6.3 Embedded clients [MOT]

To be completed by [SPAC].

6.4 Regnet Portal [MOT]

To be completed by [MOT].

6.5 Data generation [SPAC]

To be completed by [SPAC].

6.6 Search system [AIT]

To be completed by [AIT].

6.7 E-business [ZEUS]

6.7.1 Domain services [SR]

To be completed by [SR].

6.7.2 ECommerce services [ZEUS]

To be completed by [ZEUS].

6.7.3 Collaborative services [IMAC]

To be completed by [IMAC].

6.8 Cultural Heritage Data Management [SPAC]

To be completed by [SPAC].
6.9 Ontology system [SI]

The Extensible Markup Language (XML) is essentially a meta-language, a language for defining other tag-based languages. This allows individuals and organizations to create tag sets that describe more than just how to display their information. However, this flexibility leads to an interoperability problem: if a university and a furniture store both use the tag <Chair>, do they mean the same or different things? What if another furniture store uses the tag <Seat>? XML DTDs can be used to ensure that a set of documents use the same set of tags, but it would be impossible to create a single DTD that describes everything! As such XML will be very useful as a business-to-business data exchange language and has potential for E-commerce, but without something built on top of it, will be insufficient for search. This is where ontology comes in.

SHOE: Simple HTML Ontology Extensions

Definition

SHOE can be used as the knowledge base language for the implementation of the Regnet ontology checker. SHOE is a small extension to HTML which allows web page authors to annotate their web documents with machine-readable knowledge. SHOE makes real intelligent agent software on the web possible.

HTML was never meant for computer consumption; its function is for displaying data for humans to read. The "knowledge" on a web page is in a human-readable language (usually English), laid out with tables and graphics and frames in ways that we as humans comprehend visually.

The ontology checker can make it possible for web pages to include knowledge that intelligent agents can actually read.

The ontology checker allows n-ary relations, horn clause inference, simple inheritance in the form of classification, multi-valued relations, and a conjunctive knowledge base. It does not currently allow negation, disjunction, or arbitrary functions and predicates.

The ontology checker attempts to make it difficult for entities to pretend to be other entities by providing an easily verifiable key scheme based on URLs.

Agents that will use the ontology system should assume that declarations made by entities are claims of those entities, not simple facts. For example, if ten people are claiming to be Marilyn Monroe's lost daughter, a SHOE agent shouldn't be storing the "fact" that Marilyn has ten children.

Compatibility with HTML and XML

A slight variant of the SHOE syntax exists for compatibility with XML. XML is in effect a simplified form of SGML, and thus the XML syntax for SHOE is almost identical to the original syntax. When XML becomes commonplace, the XML variant of SHOE is likely to become the standard.

There are a number of advantages to using an XML syntax for SHOE. The XML syntax allows SHOE information to be analyzed and processed using the Document Object Model (DOM), thus software that is not SHOE-aware may still use the information in more limited but still powerful ways. Additionally SHOE documents can use the XML standard for stylesheets to render SHOE information for human consumption. This is one of the most important aspects because it eliminates the redundancy of having a separate set of tags for the human-readable and machine-readable knowledge.

	<!-- XML DTD for SHOE -->

<!-- Unlike the SHOE SGML DTD, the XML version does not include the

 HTML DTD. To include XML compliant SHOE and HTML in the same

 document, follow the guidelines for using different namespaces

 expressed in the W3C's "Namespaces in XML" Recommendation. -->

<!-- All element names were changed to lower case to be consistent

 with the definition of XHTML. -->

<!ELEMENT shoe (ontology | instance)* >

<!-- Since this may be embeded in a document that doesn't have META

 elements, the SHOE version number is included as an attribute

 of the shoe element. -->

<!ATTLIST shoe

 version CDATA #REQUIRED >

<!-- Declarations for ontologies -->

<!ELEMENT ontology
(use-ontology | def-category | def-relation |

 def-rename | def-inference | def-constant |

 def-type)* >

<!ATTLIST ontology

id

CDATA
#REQUIRED

version

CDATA
#REQUIRED

description
CDATA
#IMPLIED

declarators
CDATA
#IMPLIED

backward-compatible-with
CDATA
#IMPLIED >

Figure 2. XML DTD for SHOE
 Supported Ontologies

There are a number of SHOE ontologies already developed. These ontologies are open source and they can be used as a starting point for developing the Regnet ontology system. Some of these that can be proved useful to Regnet are listed below:

· Base Ontology, v. 1.0

· Commerce Ontology, v.1.0

· Document Ontology, v. 1.0

· Dublin Core Ontology, v. 1.0

· General Ontology, v. 1.0

 Development Support Tools

SHOE is being supported by various tools that are open source and free to use. Some of these are:

· Expose: This is a web robot written in Java which searches out web pages with SHOE entries, gathers the associated knowledge, and loads it into PARKA U Maryland's high-speed knowledge representation system.
· The Knowledge Annotator is a Java program which allows to annotate the web pages with SHOE graphically, without having to muck about with HTML.
· SHOE Search: Another Java tool that allows you to query SHOE information that has been discovered by Exposé. Whereas PIQ is intended for expert users, SHOE Search is intended for the casual user. As such, it is much easier to use, but does not allow some of the more complicated queries that can be constructed in the PIQ.
· Semantic Search: This is the first SHOE search engine. It uses the SHOE Search tool as a query interface to a growing repository of SHOE pages.

· PIQ (PARKA Interface for Queries): A Java tool that allows you to visually query the SHOE information that has been discovered by Exposé.

These tools are based in Java and they can be downloaded from:

http://www.cs.umd.edu/projects/plus/SHOE/downloads/
6.10 Synthesis

This table contain a synthesis of sofware tools necessary to the developpement and test of the Regnet system.

	Function
	Tool
	Comment

	Web server
	Apache + tomcat
	Open source

	J2EE application server
	JBOSS
	Open source

	Object / relational mapping
	Castor
	Open source

	SOAP/Java
	JBOSSSoap

	Zero-Effort Object Access Package (ZOAP)

	B2B connector
	Component-X
	Imply a J2EE application server.

	PHP
	
	

	SOAP/PHP
	
	

	User profile management
	
	LDAP server

	Client : Applet
	Java Web start
	Available for free from Sun

	XML Editor
	
	

	Harvester
	
	

	Connecter Z39.50
	
	

	Database
	
	

	Operating system
	Linux
	Open source

	Development tool: Java IDE
	Forte for Java
	

7 Interfaces [ZEUS]

This part describes interfaces between architecture components.

TBC

8 Risks [VALT]

TBC

9 To do list

Next tables represents a codification of the modules and the current state of to do actions. Updating in this tables will generate new versions on the whole IR document. The partner of the to do list is the partner in charge of solving the action or in charge of co-ordinating the solution.

Codification of modules

	Code
	Name
	Partner

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

To do actions

	Code
	Module
	Description
	Partner
	Date

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

10 References

11 Appendix

11.1 J2EE Architecture

Application servers are the answer to three main objectives: propose a development environment, support integration of legacy application and facilitate application deploiement. Java add the simplicity and standardisation.

Tree tiers architectures has been defined in order to solve these problems, but implementation complexity and lack of tools prevent, until recend time, their adoption. Application server gives usable solutions by providing technical framework.

Application server utilisation provides development simplification: application development on such a framework consist in developping components and to deposit them into the server. In such way, development team write little technical code, the application server gives technical framework in order to integrate components.

11.1.1 Description

E-business applications are moving to open and standards-based technologies. The trend is encouraging a growing number of Web applications package vendors to embrace the J2EE specification. The specification is the result of an industry partnership and open community process led by Sun Microsystems.

The J2EE Platform provides a component-based approach to the design, development, assembly, and deployment of enterprise applications. The J2EE platform is designed to provide server-side and client-side support for developing enterprise, multi-tier applications. Such applications are typically configured as a client tier to provide the user interface, one or more middle-tier modules that provide client services and business logic for an application, and backend enterprise information systems providing data management.

The J2EE platform provides a multi-tier distributed application model. This means that the various parts of an application can run on different devices. The J2EE architecture defines a client tier, a middle tier (consisting of one or more sub-tiers), and a backend tier providing services of existing information systems. The middle tier supports client services through Web containers in the Web tier and supports business logic component services through Enterprise JavaBeans containers in the EJB tier. The enterprise information system (EIS) tier supports access to existing information systems by means of standard APIs.

Central to the J2EE component-based development model is the notion of containers. Containers are standardized runtime environments that provide specific components services. Components can expect these services to be available on any J2EE platform from any vendor (e.g. transaction, EJB life cycle management). Containers also provide standardized access to enterprise information systems; for example, providing RDBMS access through the JDBC API. In addition, containers provide a mechanism for selecting application behaviors at assembly or deployment time.

With a set of features designed specifically to expedite the process of distributed application development, the J2EE platform offers several benefits:

· Simplified architecture and development

· Scalability to meet demand variations

· Integration with existing information systems

· Choices of servers, tools, components

· Flexible security model
Enterprise application developers use the services through a set of Java technologies or APIs mandated by the J2EE specification. Because developers do not have to worry about low-level service details, it is easy to develop multitiered, distributed, scalable Java applications. J2EE services also provide for customizing applications at deployment.

J2EE application developers write application components. An application component is a self-contained module that is added to and interfaces with other application components. Application components include thin-client applications, applets, servlets, JavaServer Pages (JSPs), and server-side Enterprise JavaBeans (EJBs).

A typical J2EE application comprises presentation, business logic, and data tiers.

J2EE architecture for a typical J2EE application is based on three tiers.

[image: image6.png]HTML| HTML

Client Cliert

o s
ci Applction 5

Lbraries writcen in other

EJB Session Bean f— CORBA delsgation —}- languges (C++, COBOL.

Ja.and 59 on)

RMJIoP

5.y e | re]

pec
e QLj £p%
¥
= Exiring Syem

The presentation tier clients can be CORBA clients, applets, Java applications, and JSPs or servlets. The business tier contains a mix of Session (process) and Entity (data) EJBs. The EJBs run inside containers provided by an application server. The EJBs rely on their containers and the application server to provide transaction, state management, persistence, security, and resource pooling services. Any client component needing the services of an EJB locates its reference through JNDI and uses RMI-IIOP for method invocation. Figure shows that the JDBC API is used to integrate with relational or tabular data sources, and connectors are used to integrate with nonrelational data sources and EISs.

Main components of the J2EE architecture are described below: JSP, Servlet, EJB, JDBC.

11.1.2 Presentation tier: JSP, Servlet

JavaServer Pages (JSP) offers a 100% Pure Java alternative to Microsoft's proprietary Active Server Pages (ASP). JSP technology extends Java servlet technology, and, in fact, the JSP framework translates JSP pages into servlets at run time. Servlets are popular because they supply architectural and performance advantages over CGI scripts. Servlets can also generate dynamic Web pages by mixing static HTML with content supplied by database queries or business services. JavaServer Pages invert this approach by imbedding Java code in HTML. This ability to insert Java code into HTML pages adds flexibility to servlet-based Web architectures.

To generate HTML, servlets must supply formatted strings to println() calls. This technique clogs Java code with line after line of hard-to-comprehend HTML. Further, when servlets generate HTML, Web page design requires programmers. JavaServer Pages pull HTML out of Java code and create a role for HTML designers. Site development can proceed along parallel tracks—Java design and HTML design—thereby delivering a Web site faster. JavaServer Pages also encourage loose coupling between business logic components and presentation components, thereby making reuse of both more likely.

11.1.3 Business Tier: EJB

The Enterprise JavaBeans (EJB) architecture is a server-side technology for developing and deploying components containing the business logic of an entreprise application. Entreprise JabaBeans components are scalable, transactional, and multi-user secure.

Entreprise beans are hosted by an EJB container. In addition to standard container services, an EJB container provices a range of transaction and persistence services and access to the J2EE service and communication APIs.

There are two types of entreprise beans: session beans and entity beans.

Session Beans

A session bean is created to provide some service on behalf of a client and usually exists only for the duration of a single client-server session. A session bean performs operations such as calculations or accessing a database for the client. While a session bean may be transactional, it is not recoverable should its container crash.

Session beans can be stateless or can maintain conversational state across method and transactions. If they do maintain state, the EJB container manages this state if the object must be removed from memory. However, the session bean object itself must manage its own persistent data.

Entity Beans

An entity bean is a persistent object that represents data maintained in a data store; its focus is data-centric. An entity bean can manage its own persistence or it can delegate this function to its container. An entity bean can live as long as the data it represents.

An entity bean is identified by a primary key. If the container in which an entity bean is hosted crashes, the entity bean, its primary key, and any remote references survive the crash.

11.1.4 Data tier: JDBC

JDBC is a vendor-independent API for accessing relational data sources. It is easy to use JDBC to send SQL statements to virtually any relational database for retrieving and updating data (Oracle, Sybase, DB2, Informix, and SQLServer, to name some of the most pervasive examples). First specified in 1997, the JDBC API initially focused on basic call-level interfaces to SQL databases. JDBC 2.1 and Optional Package 2.0 extended the API's capabilities to collaborate with J2EE application servers, providing connection management and distributed transactional support across multiple databases.

JDBC's benefits are:

· Developers program to a common client API based on SQL. A developer who knows the JDBC API can program for any relational database. Relational database vendors do not have to provide different drivers for different application servers. If a driver is JDBC-compliant (JDBC 2.1 and the 2.0 Optional Package), the driver vendor is assured that its driver will work with any J2EE-compliant application server.

· Application server vendors do not have to write special code to accommodate different drivers. They extend their application server once to comply with J2EE and JDBC requirements and open themselves to interoperability with a wide range of JDBC drivers.

11.1.5 J2EE application servers

Developing J2EE applications requires a J2EE-compliant application server. The application servers come with an HTTP server, a database, and deployment tools. Because the servers comply with J2EE, they also provide support for additional services, including naming and access, resource pooling, transactions, and security.
J2EE specification is currently release to version 1.2 but the majority of the available tools are currently in version 1.1.

There are plenty of industrial tool both commercial or open source. A detail matrix of all the J2EE application server is available from flashline at: http://www.flashline.com/components/appservermatrix.jsp.

A pdf file of this document: print_matrix.pdf
11.1.6 J2EE resources

There are plenty of J2EE resources available on the Net. More relevant are:

Sun page: http://java.sun.com/j2ee/

http://www.theserverside.com/home/index.jsp
J2EE nlueprints from Sun: http://java.sun.com/j2ee/blueprints/index.html
Texmetrix: http://www.techmetrix.com/
11.2 PHP

TBC

11.3 Web services

This annexe gives information about technologies used in order to integrate Regnet software modules based on Web services approach.

11.3.1 SOAP

11.3.2 WSDL

11.3.3 UDDI

11.3.4 Tools

PHP/Java intergration.

11.4 Acronyms

Here are main acronyms used in this document.

	ADO
	ActiveX Data Object

	CGI
	Common Gateway Interface

	CORBA
	Common Object Request Broker Architecture

	EAI
	Entreprise Application Integration

	EJB
	Enterprise JavaBeans

	GUI
	Graphical User Interface

	HTML
	Hyper Text Markup Language

	HTTP
	Hyper Text Transfer Protocol

	IDL
	Interface Description Language

	IIOP
	Internet Inter ORB Protocol

	J2EE
	Java 2 Enterprise Edition

	J2SE
	Java 2 Standard Edition

	JDBC
	Java DataBase Connectivity

	JMS
	Java Messaging Service

	JNDI
	Java Naming and Directory Interface

	JRMP
	Java Remote Method Procedure call

	JSP
	Java Server Pages

	JTA
	Java Transaction API

	JTS
	Java Transaction Service

	JVM
	Java Virtual Machine

	LDAP
	Lightweight Directory Access Protocol

	MOM
	Message Oriented Midleware

	ORB
	Object Request Broker

	OTM
	Object Transactional Monitor

	PDF
	Portable Document Format

	RMI
	Remote Method Invocation

	SOAP
	Simple Object Access Protocol

	SSL
	Secure Socket Layer

	XML
	EXtensible Markup Language

 � �

Figure 1. Ontology Server Decomposition

Search Engine

Ontology

Data

Management

Querying Tool

Knowledge Annotator

Ontology

Data

Ontology Checker

Middleware Bus

REGNET

� Demilitarized Zone

RN_IR141v02_SI_spec1
REGNET IST-2000-26336
Page 14 of 14

_1055135815.doc
[image: image1.wmf]Directory

and Security

Server

Web

Clients

Regnet

Portal

EBusiness

Server

Connector

Connector

eBusiness

Database

eBusiness

Database

Intranet Network

Regnet

Connector

Regnet

Connector

Regnet

Portal

CH Data Server

Connector

Connector

CH Database

CH Database

Regnet

Connector

Regnet

Connector

Ontology

Server

Connector

Connector

Ontology

Database

Ontology

Database

Embedded

Clients

Regnet

Clients

Internet Network

Regnet

node

Regnet

node

_1055135923.doc

EBusiness data

Web

server

eProcurement

Page generation

eBusiness

Data transformation

Users profiles

Ebusiness API

Regnet Connector

Data acquisition

Ontology data management

Auction

Ontology API

CH data

 API

CH data management

Virtual directory

CH data

Virtual shop

Search

Ontology

Ontology data

Data acquisition

Search

_1055156990.doc
[image: image1.wmf]DB

eBusiness

Database

Server

Client

HTTP

Web

Server

Regnet

Portal

CGI Handling

Server

Collaborative services

Server

Domain services

Server

eCommerce

services

Server

Ontology

Server

Ontology

SOAP/XML

SOAP/XML

SOAP/XML

SOAP/XML

SOAP/XML

_1054645244.doc

EBusiness object

Ontology data

CH data

eBusiness data

Ontology checker

E-Business

Data Generation

Search system

Electronic publishing

Sessions

Client

Data generation

Regnet Portal

Middleware

Data access

Business objects

Applicative logic

External ressources

Presentation

CH Objects

Ontology management

E-Business

User profile

Business

Search system

_1054711375.doc

Web browser

Web

server

Remote treatments

Regnet server

GUI logic

GUI

Data access

 HTTP

IIOP

Private space

Acquisition Web client architecture

Business objects

Application logic

Local treatments

