3.4.1 Knowledge Base Access (subsystem-3)

Subsystem-3 includes data about repositories, document types, domains, user profiles, product catalogues, terminologies, external systems, etc. It can be considered as a layer between the 'user access points' (Subsystem-4, -5, -6) and the different repository (content) related subsystems (Subsystem-1, -2, -7). It includes different administration tools for managing authority files, thesauri, metadata schemas, document type definitions, etc). This subsystem might be connected to external registries.

4.1.4 Knowledge Base Access [SI, CERT]

	Reference
	Requirement
	Priority
	Comment
	Use Case
	Cross reference

	Group 01: Ontology System: Knowledge Base Data Management

	FR-KB-01-01
	Check data integrity
	1
	Use of proper tools
	U1
	

	FR-KB-01-02
	Update Knowledge base
	1
	Data about doc types, domains etc
	U1.1
	

	FR-KB-01-03
	Insert data in Knowledge base
	1
	Data about doc types, domains, etc
	U1.2
	

	FR-KB-01-04
	Delete data in Knowledge base
	1
	Data about doc types, domains, etc
	U1.3
	

	FR-KB-01-05
	Check XML schemas
	1
	For verification
	U2
	

	Group 02: Ontology System: Search Knowledge Base

	FR-KB-02-01
	Search Knowledge base
	1
	Use of style sheets
	U3
	

	FR-KB-02-02
	Export results
	1
	Transformed to proper format according to query
	U4
	

	FR-KB-02-03
	Translate query
	2
	For later versions and various formats that going to be supported
	U5
	

	FR-KB-02-04
	Transform data to ontology data
	1
	Encapsulate knowledge. Use of style sheets
	U6
	

	FR-KB-02-05
	Find stylesheet
	1
	For the transformation of data
	U6.1
	

	FR-KB-02-06
	Find thematic collection
	1
	TopicMaps
	U6.2
	

	FR-KB-02-07
	Manage Search Session in knowledge base
	1
	Define a result set
	U7
	

	FR-KB-02-08
	Create Session ID
	1
	Create result set in knowledge base
	U7.1
	

	FR-KB-02-09
	Find Session ID
	1
	Find result set in knowledge base
	U7.2
	

	FR-KB-02-10
	Delete Session ID
	1
	Delete result set in knowledge base
	U7.3
	

5.6 Knowledge Base Access [SI, CERT]

[image: image1.wmf]Ontology System - Knowledge Base Data Management

Reference System

check data

 integrity U1

update Knowledge

base U1.1

insert data in

knowledge base

U1.2

detete data from

knowledge base

U1.3

«extends»

«extends»

«extends»

check XML schemas

U2

«uses»

«uses»

external component

Figure‑1. Ontology System: Knowledge Base Data Management

[image: image2.wmf]Ontology System - Search Knowledge Base

search & retrieval

export results

U4

create session

ID U7.1

find session

ID U7.2

delete session

ID U7.3

search knowledge

base U3

manage search

sessions U7

«extends»

«extends»

«extends»

«extends»

«extends»

transform data

U6

«extends»

translate query

U5

«extends»

find stylesheet

U6.1

find thematic

collection U

6.2

«extends»

«extends»

reference system

Figure 2 – Ontology System: Search Knowledge Base
	UC Identifier
	Description
	Tech. Leader
	Provider
	Priority

	U1
	Check data integrity
	
	
	

	U1.1
	Update knowledge base
	
	
	

	U1.2
	Insert data in knowledge base
	
	
	

	U1.3
	Delete data from knowledge base
	
	
	

	U2
	Check XML schemas
	
	
	

	U3
	Search knowledge base
	
	
	

	U4
	Export results
	
	
	

	U5
	Translate query
	
	
	

	U6
	Transform data
	
	
	

	U6.1
	Find stylesheet
	
	
	

	U6.2
	Find thematic collections
	
	
	

	U7
	Manage search sessions
	
	
	

	U7.1
	Create session ID
	
	
	

	U7.2
	Find session ID
	
	
	

	U7.3
	Delete session ID
	
	
	

6.5 Knowledge Base Access [SI, CERT]

An important issue when designing an ontology is setting an appropriate scope. In order to set the initial scope the following questions have to be asked:

· What kinds of pages will be annotated?

· What sorts of queries could be used to answer?

· Who will be the user of the pages?

· What kinds of objects are of interest to these users?

· What are the interesting relationships between these objects?

The motivation for web ontologies is slightly different from that of traditional ontologies. People rarely query the web searching for abstract concepts or similarities between very disparate concepts, and as such, complex upper ontologies are not necessary.

The most important aspect of the ontology checker system will be the ability to provide users with the information they need. Since we are dealing with an Internet environment, it is important that users can access this information through their web browsers. For this reason the ontology checker system will be developed based on widely accepted composition technologies standards (e.g. Java).

When designing an ontology checker system, the first issue that it is worthwhile to spend time is getting the ontology “right”. By “right”, we mean that it must cover the concepts in the types of pages that are to be used and the ways in which these pages will be accessed.

The ontology checker node is central to the REGNET architecture, as it controls its integrity and to some extent its logic. The knowledge base subsystem that it contains provides the data and the functions to accomplish that. Specifically, its main aspects can include:

· Data: It makes sure that all the data inserted and produced from the system are valid and the metadata derived from them are correctly structured (as in XML metadata).

· Business rules: guarantees that business exchange will be done in a unified way, using a common set of protocols, and that product catalogues of the various museums are structured in a standard manner.

· User profiles: storing a common template to be used for each user profile. Every time a new user logs in, his/her profile is created in a standard way.

· Document types: specifying the formats for the documents throughout the project. For example, certain initial museum data files will be in the CSV (Comma Separated Values) format. This will have to be allowed by the ontology checker, which perhaps will have to include conversion functions whenever the initial document isn’t in the proper format.

· Language tools: it would be useful for commands like the search/retrieve mechanism that language tools were defined in the Ontology Checker Knowledge Base. For example, the existence of a thesaurus could help the end user refine his/her search by typing words close in meaning to the original ones.
The ontology checker will be able to declare:

· Classifications (categories) for data entities. Classifications may inherit from other classifications ("An X painting is French").

· Valid relationships between data entities and other data entities or simple data (strings, numbers, dates, booleans). Arguments for relationships are typed, either by the simple data that can fill the argument, or with the classification a data entity must fall under in order to fill an argument.

· Inferences in the form of horn clauses with no negation ("If a painting belongs to a museum, that painting automatically belongs to any museum or organization the museum is a sub-part of").

· Inheritance from other ontologies: ontologies may be derived from or extend zero or more outside ontologies.

· Versioning. Ontologies may extend previous ontology versions.

HTML pages with embedded ontology checking may:

· Declare arbitrary data entities. Usually, one of these entities is the web page itself.

· Declare the ontologies, which they will use when making declarations about entities ("I'm using the 'Regnet Ontology v1. ' promulgated by Regnet").

· Categorize entities ("This entity is a painting").

· Declare relationships between entities or between entities and data.

[image: image3.wmf]

Ontology Checker

Knowledge

Annotator

Querying Tool

Search Engine

Ontology

Data

Ontology

Data

Management

Figure 3. Ontology Server Decomposition

Figure 3 shows the Ontology Server Decomposition:

· A single, comprehensive ontology will be available on the Regnet Website.

· Knowledge providers who wish to make material available to the ontology system, they will have to use a tool (e.g. Knowledge Annotator) to mark-up their pages in a way that these will be integrated to the ontology system.

· The knowledge providers then place the pages on the Web and notify Regnet.

· Then the ontology checker reviews the site and if it meets the ontology standards, adds it to the list of sites (Ontology Data Management) that the search engine allows to visit.

· The knowledge base responds to user’s queries.

6.5.1 Ontology and Topic Maps

Topic maps concentrate more on topics, leaving associations more or less as second-class citizens. The most common use of topic maps is for navigation within a collection of documents, based on topics. However, the standard makes no allowance for allowing associations to have occurrences.

The Topic Map standard only defines the class-instance relationship between topics by using the types attribute. It does not define mechanisms for defining, in a standard way, other types of relationships such as superclass-subclass. Definition of these other relationships is left to the individual implementations. While this simplifies the development of the standard, it has created a huge problem for topic map application interoperability.

On the other hand ontologies allow the inheritance of all the components present in their ancestors. As a result, ontologies are interoperable to the extent that they share the same ancestor ontologies. Furthermore, the aim of an ontology is to allow one to define what is relevant to a particular problem and what should be ignored. The proposed ontology for Regnet will consist of entities which define rules guiding what kinds of assertions may be made and what kind of inferences may be drawn on ground assertions, and instances, entities which make assertions based on those rules. The ontology will exist in a distributed environment and therefore the assertions will be treated as claims being made by specific instances instead of facts to gather and intern as generally-recognised truth.

7.9 Ontology System [SI, CERT]

The Extensible Markup Language (XML) is essentially a meta-language, a language for defining other tag-based languages. This allows individuals and organizations to create tag sets that describe more than just how to display their information. However, this flexibility leads to an interoperability problem: if a university and a furniture store both use the tag <Chair>, do they mean the same or different things? What if another furniture store uses the tag <Seat>? XML DTDs can be used to ensure that a set of documents use the same set of tags, but it would be impossible to create a single DTD that describes everything! As such XML will be very useful as a business-to-business data exchange language and has potential for E-commerce, but without something built on top of it, will be insufficient for search. This is where ontology comes in.

7.9.1 SHOE: Simple HTML Ontology Extensions

7.9.1.1 Definition

SHOE can be used as the knowledge base language for the implementation of the Regnet ontology checker. SHOE is a small extension to HTML, which allows web page authors to annotate their web documents with machine-readable knowledge. SHOE makes real intelligent agent software on the web possible.

HTML was never meant for computer consumption; its function is for displaying data for humans to read. The "knowledge" on a web page is in a human-readable language (usually English), laid out with tables and graphics and frames in ways that we as humans comprehend visually.

The ontology checker can make it possible for web pages to include knowledge that intelligent agents can actually read.

The ontology checker allows n-ary relations, horn clause inference, simple inheritance in the form of classification, multi-valued relations, and a conjunctive knowledge base. It does not currently allow negation, disjunction, or arbitrary functions and predicates.

The ontology checker attempts to make it difficult for entities to pretend to be other entities by providing an easily verifiable key scheme based on URLs.

Agents that will use the ontology system should assume that declarations made by entities are claims of those entities, not simple facts. For example, if ten people are claiming to be Marilyn Monroe's lost daughter, a SHOE agent shouldn't be storing the "fact" that Marilyn has ten children.
7.9.1.2 Compatibility with HTML and XML

A slight variant of the SHOE syntax exists for compatibility with XML. XML is in effect a simplified form of SGML, and thus the XML syntax for SHOE is almost identical to the original syntax. When XML becomes commonplace, the XML variant of SHOE is likely to become the standard.

There are a number of advantages to using XML syntax for SHOE. The XML syntax allows SHOE information to be analysed and processed using the Document Object Model (DOM), thus software that is not SHOE-aware may still use the information in more limited but still powerful ways. Additionally SHOE documents can use the XML standard for style sheets to render SHOE information for human consumption. This is one of the most important aspects because it eliminates the redundancy of having a separate set of tags for the human-readable and machine-readable knowledge.

	<!-- XML DTD for SHOE -->

<!-- Unlike the SHOE SGML DTD, the XML version does not include the

 HTML DTD. To include XML compliant SHOE and HTML in the same

 document, follow the guidelines for using different namespaces

 expressed in the W3C's "Namespaces in XML" Recommendation. -->

<!-- All element names were changed to lower case to be consistent

 with the definition of XHTML. -->

<!ELEMENT shoe (ontology | instance)* >

<!-- Since this may be embedded in a document that doesn't have META

 elements, the SHOE version number is included as an attribute

 of the shoe element. -->

<!ATTLIST shoe

 version CDATA #REQUIRED >

<!-- Declarations for ontologies -->

<!ELEMENT ontology
(use-ontology | def-category | def-relation |

 def-rename | def-inference | def-constant |

 def-type)* >

<!ATTLIST ontology

id

CDATA
#REQUIRED

version

CDATA
#REQUIRED

description
CDATA
#IMPLIED

declarators
CDATA
#IMPLIED

backward-compatible-with
CDATA
#IMPLIED >

XML DTD for SHOE
7.9.1.3 Supported Ontologies

There are a number of SHOE ontologies already developed. These ontologies are open source and they can be used as a starting point for developing the Regnet ontology system. Some of these that can be proved useful to Regnet are listed below:

· Base Ontology, v. 1.0

· Commerce Ontology, v.1.0

· Document Ontology, v. 1.0

· Dublin Core Ontology, v. 1.0

· General Ontology, v. 1.0

7.9.2 XML TopicMaps (XTM):

7.9.2.1 Introduction

Topic maps are a new ISO standard for describing knowledge structures and associating them with information resources. As such they constitute an enabling technology for knowledge management. Topic maps are also destined to provide powerful new ways of navigating large and interconnected corpora. While it is possible to represent immensely complex structures using topic maps, the basic concepts of the model – Topics, Associations, and Occurrences (TAO) – are easily grasped. This paper provides a non-technical introduction to these and other concepts (the IFS and BUTS of topic maps), relating them to things that are familiar to all of us from the realms of publishing and information management, and attempting to convey some idea of the uses to which topic maps will be put in the future.

7.9.2.2 Topics

A topic, in its most generic sense, can be any “thing” whatsoever – a person, an entity, a concept, really anything – regardless of whether it exists or has any other specific characteristics, about which anything whatsoever may be asserted by any means whatsoever.

In fact, this is almost word for word how the topic map standard defines subject, the term used for the real world “thing” that the topic itself stands in for. We might think of a “subject” as corresponding to what Plato called an idea. A topic, on the other hand, is like the shadow that the idea casts on the wall of Plato's cave: It is an object within a topic map that represents a subject. In the words of the standard: “The invisible heart of every topic link is the subject that its author had in mind when it was created. In some sense, a topic reifies a subject...”

Strictly speaking, the term “topic” refers to the element in the topic map document (the topic link) that represents the subject being referred to. However, in this article it is used more loosely to denote both of these things together. Whenever there is a need to distinguish between the two, we use the terms “topic link” and “subject”.

So, in the context of a dictionary of opera, a topic might represent subjects such as “Tosca”, “Madame Butterfly”, “Rome”, “Italy”, the composer “Giacomo Puccini”, or his birthplace, “Lucca”: that is, anything that might have an entry in the dictionary – but also much else besides.

[image: image4.png]® ®
Tosca Luces [
[J Htaly

® Puccini
Rome [
Madame Butterly

Figure 3 - Topics

Topic types

Topics can be categorized according to their kind. In a topic map, any given topic is an instance of zero or more topic types. This corresponds to the categorization inherent in the use of multiple indexes in a book (index of names, index of works, index of places, etc.), and to the use of typographic and other conventions to distinguish different types of topics.

Thus, Puccini would be a topic of type “composer”, Tosca and Madame Butterfly topics of type “opera”, Rome and Lucca topics of type “city”, Italy a topic of type “country”, etc. In other words, topic types represent a typical class-instance relationship.

Exactly what one chooses to regard as topics in any particular application will vary according to the needs of the application, the nature of the information, and the uses to which the topic map will be put: In a thesaurus, topics would represent terms, meanings, and domains; in software documentation they might be functions, variables, objects, and methods; in legal publishing, laws, cases, courts, concepts, and commentators; in technical documentation, components, suppliers, procedures, error conditions, etc.

Topic types are themselves defined as topics by the standard. You must explicitly declare “composer”, “opera”, “city”, etc. as topics in your topic map if you want to use them as types (in which case you will be able to say more about them using the topic map model itself).

[image: image5.png]o [

v Italy
[| Puccini

Rore []
Madame Butterfly

Figure 4 - Topic types

Topics have three kinds of characteristics: names, occurrences, and roles in associations.

Topic names

Normally topics have explicit names, since that makes them easier to talk about. However, topics don't always have names: A simple cross reference, such as “see page 97”, is considered to be a link to a topic that has no (explicit) name.

Names exist in all shapes and forms: as formal names, symbolic names, nicknames, pet names, everyday names, login names, etc. The topic map standard doesn't pretend to try to enumerate and cover them all. Instead, it recognizes the need for some forms of name (that have particularly important and universally understood semantics) to be defined in a standardized way, in order for applications to be able to do something meaningful with them, and at the same time the need for complete freedom and extensibility to be able to define application-specific name types.

The standard therefore provides an element form for topic name, which it allows to occur zero or more times for any given topic, and to consist of one or more of the following types of name:

· Base name (required)

· Display name (optional)

· Sort name (optional)

[image: image6.png]Htaly

A

Thalie

Tosca ’

v Castel Sant' Angelo

® [ErarsEn

LaScala

Rarme

Roma

Gracoms Puceint

Figure 5 - Topic names

The ability to be able to specify more than one topic name can be used to indicate the use of different names in different contexts or scopes (about which more later), such as language, style, domain, geographical area, historical period, etc. A corollary of this feature is the topic naming constraint, which states that no two subjects can have exactly the same name in the same scope.

7.9.2.3 Occurences

A topic may be linked to one or more information resources that are deemed to be relevant to the topic in some way. Such resources are called occurrences of the topic.

An occurrence could be a monograph devoted to a particular topic, for example, or an article about the topic in an encyclopaedia; it could be a picture or video depicting the topic, a simple mention of the topic in the context of something else, a commentary on the topic (if the topic were a law, say), or any of a host of other forms in which an information resource might have some relevance to the subject in question.

Such occurrences are generally outside the topic map document itself (although some of them could be inside it), and they are “pointed at” using whatever mechanisms the system supports, typically HyTime addressing or XPointers. Today, most systems for creating handcrafted indexes (as opposed to full text indexes) use some form of embedded mark-up in the document to be indexed. One of the advantages to using topic maps, is that the documents themselves do not have to be touched.

[image: image7.png]

Figure 6 - Occurrences

An important point to note here is the separation into two layers of the topics and their occurrences. This separation is one of the clues to the power of topic maps and we shall return to it later.

Occurrence roles

Occurrences, as we have already seen, may be of any number of different types (we gave the examples of “monograph”, “article”, “illustration”, “mention” and “commentary” above). Such distinctions are supported in the standard by the concepts of occurrence role and occurrence role type.

[image: image8.png]

Figure 7 - Occurrence roles

The distinction between an occurrence role and its type is subtle but important. In general terms they are both “about” the same thing, namely the way in which the occurrence contributes information to the subject in question (e.g. through being a portrait, an example or a definition). However, the role (indicated by the role attribute) is simply a mnemonic; the type (indicated by the type attribute), on the other hand, is a reference to a topic in the map, which further characterizes the relevance of the role. In general it makes sense to specify the type of the occurrence role, since then the power of topic maps can be used to convey more information about the role.

7.9.2.4 Associations

A topic association is (formally) a link element that asserts a relationship between two or more topics. Examples might be as follows:

· “Tosca was written by Puccini”

· “Tosca takes place in Rome”

· “Puccini was born in Lucca”

· “Lucca is in Italy”

· “Puccini was influenced by Verdi”

[image: image9.png]y

Figure 8 - Topic associations

Association types

Just as topics can be grouped according to type (composer, opera, country, etc.) and occurrences according to role (mention, article, commentary, etc.), so too can associations between topics be grouped according to their type. The association type for the relationships mentioned above are written_by, takes_place_in, born_in, is_in (or geographical containment), and influenced_by. As with most other constructs in the topic map standard, association types are themselves defined in terms of topics.

The ability to do typing of topic associations greatly increases the expressive power of the topic map, making it possible to group together the set of topics that have the same relationship to any given topic. This is of great importance in providing intuitive and user-friendly interfaces for navigating large pools of information.

It should be noted that topic types are regarded as a special (i.e. syntactically privileged) kind of association type; the semantics of a topic having a type (for example, of Tosca being an opera) could equally well be expressed through an association (of type “type-instance”) between the topic “opera” and the topic “Tosca”. The reason for having a special construct for this kind of association is the same as the reason for having special constructs for certain kinds of names (indeed, for having a special construct for names at all): The semantics are so general and universal that it is useful to standardize them in order to maximize interoperability between systems that support topic maps.

[image: image10.png]e 5
»

0"

Figure 9 - Association types

It is also important to note that while both topic associations and normal cross references are hyperlinks, they are very different creatures: In a cross reference, the anchors (or end points) of the hyperlink occur within the information resources (although the link itself might be outside them); with topic associations, we are talking about links (between topics) that are completely independent of whatever information resources may or may not exist or be considered as occurrences of those topics.

7.9.2.5 Goals

The design goals for XTM are:

· XTM shall be straightforwardly usable over the Internet.

· XTM shall support a wide variety of applications.

· XTM shall be compatible with XML, XLink, and ISO 13250.

· It shall be easy to write programs that process XTM documents.

· The number of optional features in XTM is to be kept to the absolute minimum, ideally zero.

· XTM documents should be human-legible and reasonably clear.

· The XTM design should be prepared quickly.

· The design of XTM shall be formal and concise.

· XTM documents shall be easy to create.

· Terseness in XTM mark-up is of minimal importance.

8.7 Ontology System [SI, CERT]

8.7.1 SHOE tools

Various tools that are open source and free to use are supporting SHOE. Some of these are:

· Expose: This is a web robot written in Java which searches out web pages with SHOE entries, gathers the associated knowledge, and loads it into PARKA U Maryland's high-speed knowledge representation system.
· The Knowledge Annotator is a Java program, which allows annotating the web pages with SHOE graphically, without having to muck about with HTML.
· SHOE Search: Another Java tool that allows you to query SHOE information that has been discovered by Exposé. Whereas PIQ is intended for expert users, SHOE Search is intended for the casual user. As such, it is much easier to use, but does not allow some of the more complicated queries that can be constructed in the PIQ.
· Semantic Search: This is the first SHOE search engine. It uses the SHOE Search tool as a query interface to a growing repository of SHOE pages.

· PIQ (PARKA Interface for Queries): A Java tool that allows you to visually query the SHOE information that has been discovered by Exposé.

These tools are based in Java and they can be downloaded from:

http://www.cs.umd.edu/projects/plus/SHOE/downloads/
8.7.2 XML TopicMaps (XTM) tools

For a long while it was difficult to experiment with topic maps because tools did not exist to manipulate or visualise topic maps. This situation is changing and there are now a number of tools freely available to developers. Some of them are:

· Ontopia Navigator: allows you to navigate topic maps in a generic interface

· XSLT stylesheets: for the transformation of the numerous existing XML DTDs for topic maps. The stylesheets are designed to convert topic maps from the syntaxes used by tools from Cogitech, Empolis, Infoloom, Ontopia and Techquila.com into the XTM syntax.

· MDF: a combination of a simple approach to creating reusable modules for the processing of metadata and an implementation of that approach using Java". The framework has been designed to make it easy to trawl resources, extract and clean metadata and finally write them out as a topic map.

_1060156301.vsd

_1060156427.vsd

_1057465848.doc

Ontology

Data

Management

Ontology

Data

Search Engine

Querying Tool

Knowledge Annotator

Ontology Checker

