Project Management

Interim Report 1.4

[image: image15.jpg]
REGNET-IST-2000-26336

Interim Report

	Project acronym
	REGNET
	Contract nr.
	IST-2000-26336

	Type and Number
	Interim Report no. 2.2

	Work package
	WP2: Implementation and Preparation of the Demonstration

	Task
	T2.2: Implementation of the System and Preparation of Content

	Date of delivery
	Contractual
	YYYY-MM-DD
	Actual
	2001-12-05

	Code name
	RN_IR22v01
	Version 01 draft (final (

	Objective
	Interim Report

	Distribution Type
	Restricted / Public

	Authors (Partner)
	SR, VALT

	Contact Person
	Christian Eichinger, Jean-Pierre LORRE

	Abstract
	This interim report describes results coming from task 2.2.

	Keywords List
	

	Version log
	2

Table of Contents

51
Executive summary [VALT]

52
Introduction

52.1
Iterations

52.2
Artifacts

52.2.1
Elaboration (iteration 1)

52.2.1.1
Objectives

62.2.1.2
Essential activities

62.2.1.3
Evaluation Criteria

62.2.1.4
Artefacts

72.2.2
Construction phase (iterations 2,3)

72.2.2.1
Objectives

72.2.2.2
Essential Activities

82.2.2.3
Evaluation Criteria

82.2.2.4
Artefacts

83
Core System Design [VALT]

83.1
Architecture overview

83.2
Interfaces

83.2.1
REGNET Portal [MOT]

83.2.1.1
Data Generation [SPAC]

83.2.1.2
Search and Retrieval [AIT]

83.2.1.3
E-Business [ZEUS]

93.2.2
Cultural heritage data management [SPAC]

93.2.2.1
Repository management [SPAC]

93.2.2.2
Reference system [AIT]

93.2.3
E-Business data management [ZEUS]

93.2.3.1
Catalogue management [ZEUS]

93.2.3.2
Procurement and Delivery [VALT]

93.2.4
Knowledge Base Access [SI]

93.2.5
Electronic publisher [SR]

103.2.5.1
Interface PublicationObjectHome

113.2.5.2
Interface PublicationObject

123.3
Tools and Platform

124
Prototypes

124.1
Portal + J2EE/SOAP + PHP/SOAP [MOT, ZEUS, VALT]

134.1.1
Portal to J2EE through SOAP prototype [VALT]

134.1.1.1
Scope

134.1.1.2
Architecture

144.1.1.3
Conclusion

144.2
EbXML Message [VALT]

144.2.1
Scope

154.2.2
Architecture

154.2.2.1
JAXM

164.2.2.2
JAXM API

164.2.3
Conclusion

164.3
TopicMap [TARX, SI]

164.3.1
Scope

164.3.2
Architecture

164.3.3
Conclusion

164.4
Search and Retrieval [AIT]

164.4.1
Scope

164.4.2
Architecture

164.4.3
Conclusion

164.5
CatXML [ZEUS]

164.5.1
Scope

174.5.2
Architecture

174.5.3
Conclusion

174.6
Portal [MOT]

174.6.1
WAP Portal

174.6.1.1
Scope

174.6.1.2
Architecture

184.6.1.3
Conclusion

184.6.2
WEB Portal

184.6.2.1
Scope

184.6.2.2
Architecture

184.6.2.3
Conclusion

184.7
Publication [SR]

184.7.1
Scope

184.7.1.1
XSL

194.7.1.2
Xerces

194.7.1.3
Xalan

204.7.1.4
Cocoon

204.7.2
Architecture

204.7.2.1
The publication process

214.7.2.2
Layout

234.7.2.3
Output/ Format

244.7.2.4
Proof of concept prototype

254.7.3
Conclusion

265
Design Model [VALT]

265.1
Purpose

265.2
Brief Outline

265.2.1
Introduction

265.2.2
Design-Model Hierarchy

265.2.3
Diagrams of the Design Model

275.3
REGNET Portal [MOT]

275.3.1
Data Generation [SPAC]

275.3.1.1
Introduction

275.3.1.2
Design model hierarchy

275.3.1.3
Diagrams of the design model

275.3.2
Search and Retrieval [AIT]

275.3.2.1
Introduction

275.3.2.2
Design model hierarchy

275.3.2.3
Diagrams of the design model

275.3.3
E-Business [ZEUS]

275.3.3.1
Introduction

275.3.3.2
Design model hierarchy

275.3.3.3
Diagrams of the design model

275.4
Cultural heritage data management [SPAC]

275.4.1
Repository management [SPAC]

275.4.1.1
Introduction

275.4.1.2
Design model hierarchy

275.4.1.3
Diagrams of the design model

275.4.2
Reference system [AIT]

275.4.2.1
Introduction

275.4.2.2
Design model hierarchy

275.4.2.3
Diagrams of the design model

285.5
E-Business data management [ZEUS]

285.5.1
Catalogue management [ZEUS]

285.5.1.1
Introduction

285.5.1.2
Design model hierarchy

285.5.1.3
Diagrams of the design model

285.5.2
Procurement and Delivery [VALT]

285.5.2.1
Introduction

285.5.2.2
Design model hierarchy

285.5.2.3
Diagrams of the design model

285.6
Knowledge Base Access [SI]

285.6.1
Introduction

285.6.2
Design model hierarchy

285.6.3
Diagrams of the design model

285.7
Electronic publisher [SR]

285.7.1
Introduction

305.7.2
Design model hierarchy

305.7.2.1
Authoring

315.7.2.2
Publication

315.7.2.3
Layout

315.7.2.4
Formatter

315.7.2.5
DAO (Data Access Objects)

315.7.3
Diagrams of the design model

346
Data Model

346.1.1
Data model hierarchy

346.1.2
Diagrams of the data model

347
Implementation Model [VALT]

357.1
Overview

357.2
Layers

358
Deployment Plan [AIT]

358.1
Deployment Planning

358.1.1
Responsibilities

358.1.2
Schedule

358.2
Resources

368.2.1
Facilities

368.2.2
Hardware

368.2.3
The Deployment Unit

368.2.3.1
Support Software

368.2.3.2
Support Documentation

368.2.3.3
Support Personnel

368.3
Training

369
Design pattern

369.1
Java Server Pages Model 2 Architecture

Executive summary [VALT]

1 Introduction

This document contains artefacts from the task 2.2 “Implementation of the System and Preparation of Content”.

As far as process used for Regnet project is based on Unified Process, this document contains iterations and artifacts description.
1.1 Iterations

This task has been splitten into 3 iterations of 2 months. According to UP the fisrt one is relevant to the elaboration phase, the second and the third one are relevant to construction phase.

The inception phase has been finished and elaboration phase has begun in the previous work-package (WP1). So some artifacts are part of delivrables D2 “specification and state of the art”.

Fist iteration: Architecture validation [VALT]

To be completed

Second iteration: Portal [MOT]

To be completed
Third iteration: Fist version [ZEUS]

To be completed
1.2 Artifacts

Artifacts from this task are detailed below.

1.2.1 Elaboration (iteration 1)

1.2.1.1 Objectives

The goal of the elaboration phase is to baseline the architecture of the system to provide a stable basis for the bulk of the design and implementation effort in the construction phase. The architecture evolves out of a consideration of the most significant requirements (those that have a great impact on the architecture of the system) and an assessment of risk. The stability of the architecture is evaluated through one or more architectural prototypes.

The primary objectives of the elaboration phase include:

· To ensure that the architecture, requirements and plans are stable enough, and the risks sufficiently mitigated to be able to predictably determine the cost and schedule for the completion of the development. For most projects, passing this milestone also corresponds to the transition from a light-and-fast, low-risk operation to a high cost, high risk operation with substantial organizational inertia.

· To address all architecturally significant risks of the project

· To establish a baselined architecture derived from addressing the architecturally significant scenarios, which typically expose the top technical risks of the project.

· To produce an evolutionary prototype of production-quality components, as well as possibly one or more exploratory, throw-away prototypes to mitigate specific risks such as:

· design/requirements trade-offs

· component reuse

· product feasibility or demonstrations to investors, customers, and end-users.

· To demonstrate that the baselined architecture will support the requirements of the system at a reasonable cost and in a reasonable time.

· To establish a supporting environment.

In order to achieve this primary objectives, it is equally important to set up the supporting environment for the project. This includes creating a development case, create templates, guidelines, and setting up tools.

1.2.1.2 Essential activities

· Defining, validating and baselining the architecture as rapidly as practical.

· Refining the Vision, based on new information obtained during the phase, establishing a solid understanding of the most critical use cases that drive the architectural and planning decisions.

· Creating and baselining detailed iteration plans for the construction phase.

· Refining the development case and putting in place the development environment, including the process, tools and automation support required to support the construction team.

· Refining the architecture and selecting components. Potential components are evaluated and the make/buy/reuse decisions sufficiently understood to determine the construction phase cost and schedule with confidence. The selected architectural components are integrated and assessed against the primary scenarios. Lessons learned from these activities may well result in a redesign of the architecture, taking into consideration alternative designs or reconsideration of the requirements.

At the end of the elaboration phase is the second important project milestone, the Lifecycle Architecture Milestone. At this point, you examine the detailed system objectives and scope, the choice of architecture, and the resolution of the major risks.

1.2.1.3 Evaluation Criteria

· The product Vision and requirements are stable.

· The architecture is stable.

· Executable prototypes have demonstrated that the major risk elements have been addressed and have been credibly resolved.

· The iteration plans for the construction phase are of sufficient detail and fidelity to allow the work to proceed.

· The iteration plans for the construction phase are supported by credible estimates.

· All stakeholders agree that the current vision can be met if the current plan is executed to develop the complete system, in the context of the current architecture.

· Actual resource expenditure versus planned expenditure are acceptable.

The project may be aborted or considerably re-thought if it fails to reach this milestone.

1.2.1.4 Artefacts

· Prototypes: One or more executable architectural prototypes have been created to explore critical functionality and architecturally significant scenarios.
· Risk list: Updated and reviewed. New risks are likely to be architectural in nature, primarily relating to the handling of non-functional requirements.
· Project-specific templates: The document templates used to develop the document artefacts.
· Tools: The tools used to support the work in Elaboration are installed.
· Software architecture document: Created and baselined, including detailed descriptions for the architecturally significant use cases (use-case view), identification of key mechanisms and design elements (logical view), plus definition of the process view and the deployment view if the system is distributed or must deal with concurrency issues. This artefact has been done in WP1.
· Design Model: Defined and baselined. Use-case realizations for architecturally significant scenarios have been defined and required behaviour has been allocated to appropriate design elements. Components have been identified and the make/buy/reuse decisions sufficiently understood to determine the construction phase cost and schedule with confidence. The selected architectural components are integrated and assessed against the primary scenarios. Lessons learned from these activities may well result in a redesign of the architecture, taking into consideration alternative designs or reconsideration of the requirements.
· Data Model: Defined and baselined. Major data model elements (e.g. important entities, relationships, tables) defined and reviewed.
· Implementation model. Initial structure created and major components identified and prototyped.
· Software development plan: Updated and expanded to cover the Construction and Transition phases.
· Use case model: A use-case model (approximately 80% complete)—all use cases having been identified in the use-case model survey, all actors having been identified, and most use-case descriptions (requirements capture) have been developed.
1.2.2 Construction phase (iterations 2,3)

1.2.2.1 Objectives

The goal of the construction phase is on clarifying the remaining requirements and completing the development of the system based upon the baselined architecture. The construction phase is in some sense a manufacturing process, where emphasis is placed on managing resources and controlling operations to optimize costs, schedules, and quality. In this sense the management mindset undergoes a transition from the development of intellectual property during inception and elaboration, to the development of deployable products during construction and transition.

The primary objectives of the construction phase include:

· Minimizing development costs by optimizing resources and avoiding unnecessary scrap and rework.

· Achieving adequate quality as rapidly as practical

· Achieving useful versions (alpha, beta, and other test releases) as rapidly as practical

· Completing the analysis, design, development and testing of all required functionality.

· To iteratively and incrementally develop a complete product that is ready to transition to its user community. This implies describing the remaining use cases and other requirements, fleshing out the design, completing the implementation, and testing the software.

· To decide if the software, the sites, and the users are all ready for the application to be deployed.

· To achieve some degree of parallelism in the work of development teams. Even on smaller projects, there are typically components that can be developed independently of one another, allowing for natural parallelism between teams (resources permitting). This parallelism can accelerate the development activities significantly; but it also increases the complexity of resource management and workflow synchronization. A robust architecture is essential if any significant parallelism is to be achieved.

1.2.2.2 Essential Activities

· Resource management, control and process optimization

· Complete component development and testing against the defined evaluation criteria

· Assessment of product releases against acceptance criteria for the vision.

At the Initial Operational Capability Milestone, the product is ready to be handed over to the Transition Team. All functionality has been developed and all alpha testing (if any) has been completed. In addition to the software, a user manual has been developed, and there is a description of the current release.

1.2.2.3 Evaluation Criteria

The evaluation criteria for the construction phase involve the answers to these questions:

· Is this product release stable and mature enough to be deployed in the user community?

· Are all the stakeholders ready for the transition into the user community?

· Are actual resource expenditures versus planned still acceptable?

Transition may have to be postponed by one release if the project fails to reach this milestone.

1.2.2.4 Artefacts

· The Regnet system: The executable system itself, ready to begin "beta" testing.

· Deployment plan: Initial version developed, reviewed and baselined.

· Implementation model: Expanded from that created during the elaboration phase; all components created by the end of the construction phase.

· Test model: Tests designed and developed to validate executable releases created during the construction phase.

· Training materials: User Manuals and other training materials. Preliminary draft, based on use cases.

· Tools: The tools used to support the work in Construction are installed.

· Data Model: Updated with all elements needed to support the persistence implementation (e.g. tables, indexes, object-to-relational mappings, etc.)

2 Core System Design [VALT]

2.1 Architecture overview

The Software Architecture Document provides a comprehensive architectural overview of the system, using a number of different architectural views to depict different aspects of the system.

As explained in deliverable D2 from WP1, the architecture is based on Web Services approach.
2.2 Interfaces

This part explain interfaces of each Recgnet building blocks. That is all services provides by a sub-system to other sub-systems.

2.2.1 REGNET Portal [MOT]

The Regnet Portal is constituted by three components (subsystems) enabling access to the following system functions:

· Data Generation;

· Search And Retrieval;

· E-Business.

These subcomponents have been developed using different technologies. The subsystems integration has been conducted starting from the interfaces supplied with each component.

The Regnet Portal has been developed using J2EE technology and the communication infrastructure between the Portal and the subsystems is based on SOAP.

2.2.1.1 Data Generation [SPAC]

2.2.1.2 Search and Retrieval [AIT]

2.2.1.3 E-Business [ZEUS]

2.2.2 Cultural heritage data management [SPAC]

2.2.2.1 Repository management [SPAC]

2.2.2.2 Reference system [AIT]

2.2.3 E-Business data management [ZEUS]

2.2.3.1 Catalogue management [ZEUS]

2.2.3.2 Procurement and Delivery [VALT]

The demonstrator uses Apache Soap implementation of SOAP protocol. Soap server publishes business interface that different clients are able to call if they support soap.

· searchProducts

· getUSerCommand

· createCommand

· getProduct

· getAllProducts

· addProductToCatalog

· removeProductFromCatalog

· getSupplier

· getAllCommands

· getCommand

· getArtistCommand getAllSuppliers

· searchSuppliersToBeValidated

· subscribeNewSupplier

· getListOfType
· getListOfCategories
2.2.4 Knowledge Base Access [SI]

2.2.5 Electronic publisher [SR]

The Electronic Publisher provides an RMI Interface for external systems. The functionality of the interfaces will be invoked by the Portlets / Servlets of the Electronic Publisher to complete its task. Due to that the external interface does not contain any rendering components.

[image: image1.wmf]
The two most important interfaces for external access, PublicationObjectHome and PublicationObject, are described below.

2.2.5.1 Interface PublicationObjectHome

public interface PublicationObjectHome extends Remote

This is the main interface for administration of publications

	Method Summary

	 PublicationObject
	create()
 Creates a new publication object

	 void
	delete(String id)
 Deletes the specified publication object

	 String[]
	find(String[][] params)
 Search for a specific publication

	 PublicationObject
	load(String id)
 Returns a PublicationObject

	 void
	store(PublicationObject po)
 Stores the specified publication object

2.2.5.2 Interface PublicationObject

public interface PublicationObject extends Remote

PublicationObject is the central interface for creating a publication. It defines methods for selecting a layout, a format, the language and the sorting criteria by the LATCH principle

	[image: image16.png]Method Summary

	 PublicationObject
	copy()
 Produces a copy of this publication

	 PublicationData
	getDataRefs()
 Returns the PublicationData

	 int
	getFormat()
 Returns the format of the publication

	 String
	getID()
 Returns the ID of a PublicationObject

	 int
	getLanguage()
 Returns the language of the publication

	 int[]
	getLatch()
 Returns the selected LATCH principles

	 int
	getLayout()
 Returns the layout of the publication

	 String
	getName()
 Returns the name of the PublicationObject

	 String[][]
	getPublicationAttributes()
 Returns the attributes of a publication as name value pairs.

	 void
	setPublicationAttributes(String [][] attributes)
 Sets the values of the specified attributes as name value pairs.

	 void
	load()
 Uploads the defined external data into the publication database. This functionality can be used to change the underlying data of an publication.

	 String
	produce()
 Produces the publication according to the selected criteria (layout, format, LATCH principle, language. Uploads all necessary data using the method load().

	 void
	setFormat(int format)
 Sets the format of the publication

	 void
	setLanguage(int language)
 Sets the language of the publication

	 void
	setLatch(int[] principles)
 Sets the LATCH principle by which the publication should be sorted

	 void
	setLayout(int layout)
 Sets the layout of the publication

	 String
	setName(String name)
 Sets the name of the PublicationObject

	 void
	setPublicationData(PublicationData data)
 Sets the PublicationData which is the base for the publication

The definition of the PublicationData class is still open because this will depend on the functionality provided by other subcomponents. This class, and its subclasses respectively, will carry the information needed by the StorageHandlers to connect to external datasources.
2.3 Tools and Platform

The Regnet Portal Prototype has been developed using J2EE technology and making use of the following tools:

· UML modelisation:

· Rational Rose;

· Java Environment:

· JDK 1.3 and Servlet v.2.2;

· IDE:

· Borland JBuilder v.5;

· Http Server and Servlet Engine:

· Jakarta Tomcat v.3.2.2;

· Portal Front-End Development:

· Jakarta Jetspeed v.1.3.a and Portlet API

· Jakarta Ecs v.1.4.1

· XML Parser/Validator:

· Apache Xerces v. 1.2.0;

· JDOM v.1.0b7;

· Version Control:

· CVS and Tortoise CVS v.0.43

· WAP Emulator:

· Motorola MADK 2.0, OpenWave v.4.1

· Standard Web Browsers.
3 Prototypes

Prototypes are used in a directed way to reduce risk.

Evolutionary prototypes, as their name implies, evolve from one iteration to the next. While not initially production quality, their code tends to be reworked as the product evolves. In order to keep rework manageable, they tend to be more formally designed and somewhat formally tested even in the early stages. As the product evolves, testing becomes formalized, as usually does design.

3.1 Portal + J2EE/SOAP + PHP/SOAP [MOT, ZEUS, VALT]

The objective of this prototype is to validate the integration architecture. The Portal has been developed using JetSpeed, a J2EE technology, and its components both with J2EE and with PHP. In order to integrate all of them different approach can be used:

· HTML portlet for loose coupling components;

· Protocol such as SOAP. SOAP is completely neutral with respect to operating system, programming languages and distributed computing platform.
3.1.1 Portal to J2EE through SOAP prototype [VALT]

A prototype has been defined in order to validate communication between the portal and a J2EE based component. In order to do this, the portal has been simulated by a Jakarta/Tomcat container.

3.1.1.1 Scope

The prototype implements a simple procurement system for artist and supplier collaboration. Its aim is to validate technical architecture based on simple functionalities.

· Supplier:
· Subscribe in order to become Regnet member with the supplier role. The subscription must be validated by Regnet administrator.

· Describe catalogue in terms of products: type, category, reference, name, description, price.

· Administrator (user name admin):

· Validate new request for registration of suppliers.

· Artists:

· Must be registrated.

· Access to their selection.

· Navigate through supplier's catalogues and buy material (an email is sent to the corresponding supplier).

· Look for a given product by name. They can add a quantity to virtual cart (an email is sent to the corresponding supplier).

3.1.1.2 Architecture

The prototype is based on the following architecture.

[image: image2.wmf]

Web Tier

Applicative Tier

Product

catalogue

Tomcat

JSP

Servlet

Java Bean

Apache Soap

Server

Portal simulator

Procurement system

SOAP

Java

classes

SQL

Database

Connexion between Presentation and applicative logic is based on a model 2 architecture which allows easy implementation of different communication protocol.

It is based on the following software:
· Apache/LOG4J : With log4j it is possible to enable logging at runtime without modifying the application binary. The log4j package is designed so that these statements can remain in shipped code without incurring a heavy performance cost. Logging behavior can be controlled by editing a configuration file, without touching the application binary.

· Apache/SOAP : Apache SOAP is an open-source implementation of the SOAP v1.1 and SOAP Messages with Attachments specifications in Java. Soap server is implemented as a web application in the tomcat server. The soap server deployment is very easy: only a jar file to deploy to tomcat application server.

· Apache/Xerces : The Xerces Java Parser 1.4.3 supports the XML 1.0 recommendation and contains advanced parser functionality, such as support for the W3C's XML Schema recommendation version 1.0, DOM Level 2 version 1.0, and SAX Version 2, in addition to supporting the industry-standard DOM Level 1 and SAX version 1 APIs.

· MySql : Open source relational database. Take care that the system needs corresponding JDBC driver.

· Sun/JavaMail : The JavaMailTM 1.2 API provides a set of abstract classes that model a mail system.
· Sun/JSDK 1.3 . The Java virtual machine.
3.1.1.3 Conclusion

Regnet Portal has been deployed using J2EE technology. The application server used is TOMCAT V3.2.1. Regnet Portal runs JSP and servlets for presentation facilities (dynamic generation of HTML pages). Regnet portal is responsible for running applicative logic including:

· Session data management

· Business logic invocation

· JSP execution

These dynamics pages extract data to show from a soap server. JSP and Servlet are soap client.
3.2 EbXML Message [VALT]

As state in the architecture document, communication between Regnet nodes is based on ebXML messaging. The aim of this prototype is to validate communication through this protocol.
3.2.1 Scope

In ebXML, an entire message is called a message package. A message package has one header container and zero or more payload containers. Only the header container is a SOAP envelope; the payload containers are SOAP attachments to the header container SOAP envelope.

As such, most of the ebXML-specific elements exist in the header container, which includes the elements that describe how the message will route, what type of operations it will perform, the unique identifier for the message, and so on.

The payload container(s) hold the message package's content, which can range from XML content (such as an invoice) to a TIFF image (such as a scanned-in legal contract). You refer to the payload container in the header container with an xlink reference in the header container's body.

EbXML header elements

To and From header elements
The To and From header elements in an ebXML message refer to a unique identifier for the sender (From) and a unique identifier for the receiver (To). It's recommended that both be URIs.

CPAId header element
The CPAId header element usually refers to an ID defined according to the Collaboration Protocol Profile and Agreement Specification. This ID defines how the two parties interact, both from a messaging perspective and from a business-process perspective.

ConversationId header element
A ConversationId header element uniquely identifies a set of related message exchanges. The ID must be unique.

Service header element
The Service header element denotes the service that processes the message at the destination (the To element).

Action header element
The Action header element, a subtype of the Service element, specifies what action the service should take.

MessageId header element
The MessageId header element uniquely identifies this particular message, usually in some form of a GUID (Globally Unique Identifier).

Timestamp header element
The Timestamp header element's timestamp field marks the message package's creation time.
3.2.2 Architecture

The prototype is build on top of following software:

· Tomcat 3.2.2
· JAXM early access implementation
3.2.2.1 JAXM

The JAXM specification's stated mission is to provide a SOAP (Simple Object Access Protocol)-message-oriented API for Java. JAXM uses DOM4J and JDOM as the encapsulation mechanism for XML documents (which are messages).

JAXM clients can assume two basic roles in JAXM: sender and/or receiver. The sender role sends messages to other JAXM clients acting as receivers. The receiver role receives messages sent by other sender JAXM clients. A JAXM client can play either one or both of these roles.

A JAXM provider is a product or package that provides an actual implementation of the JAXM APIs, allowing different packages to offer a JAXM layer over an existing product.

JAXM supports both the SOAP specification and the SOAP Attachment specification. JAXM assumes this base level of support. In addition, although SOAP messaging standards such as ebXML or BizTalk are not yet specified, message profiles layer them onto JAXM.

The core includes client-side libraries to generate SOAP messages using the JAXM API. This client-side runtime library can be used to send messages to remote parties using either a local provider or a remote provider. Messages can be received synchronously (using a request-response model) or asynchronously.
Local Provider

A local provider is a pure library implementation of the JAXM API that lets you send SOAP messages directly to a remote party. A local provider by definition is simple to get started but has limited possibilities for reliability and message delivery guarantees. For instance, a local provider relies largely on the reliability of the underlying transport for delivering a message. APIs to work with the local provider are in the javax.xml.soap package of the JAXM API.

Remote Provider

A remote provider is akin to a messaging server. It takes messages from an application and holds on to the application until the message is delivered. The application itself may be active or quiescent, but the remote provider continues to try to send messages from the application and to receive messages on the application's behalf. When an application comes up and establishes a connection to a remote provider, messages received by the provider for that application are delivered to it. All messages sent through a remote provider are logged for perusal later. APIs to work with the remote provider are in the javax.xml.messaging package of the JAXM API.

3.2.2.2 JAXM API

The API is broken into a messaging package and a soap package.

javax.xml.messaging
The messaging package holds the classes, interfaces, and so on required for sending and receiving SOAP messages. Moreover, it contains the Connection class to connect to the JAXM provider and to send messages, as well as the MessageListener class for receiving messages.

javax.xml.soap
The soap package provides the classes necessary for encapsulating SOAP messages. You'll find classes for SOAP header, body, elements, and so on. Many classes in the current implementation extend DOM4J and JDOM classes to achieve their functionality.
3.2.3 Conclusion

The prototype validate simple communication between two distributed servers implemented as Servlets.

3.3 TopicMap [TARX, SI]

3.3.1 Scope

3.3.2 Architecture

3.3.3 Conclusion

3.4 Search and Retrieval [AIT]

3.4.1 Scope

3.4.2 Architecture

3.4.3 Conclusion

3.5 CatXML [ZEUS]

3.5.1 Scope

3.5.2 Architecture

3.5.3 Conclusion

3.6 Portal [MOT]

The Regnet Portal prototypes developed are two:

· A Wap Portal;

· A Web Portal.

These two portal prototypes have a different front-end interface while the server-side business logic is as much as possible shared among them.

3.6.1 WAP Portal

3.6.1.1 Scope

The main aim of the WAP Portal Prototype is to validate the architecture and the interaction with at least one of its subsystems. In the first version of the prototype, has been chosen to integrate into the Portal the Search and Retrieval (S&R) component that has been developed in Java. For this first step we can use RMI as communication protocol.

Another aim of the prototype is to identify a possible GUI and the contents to made available to the WAP users. Due to the limitation of Wap parameters (display size, memory, connection speed) is necessary to take care of the GUI design, data size and to minimize the number of access to the server.

3.6.1.2 Architecture

The prototype is based on the following architecture:

[image: image3.wmf]

WAP1.2

WAP1.2

HTTP1.1

HTTP1.1

WAP

WAP

Gateway

Gateway

WEB Server

WEB Server

TOMCAT

TOMCAT

JETSPEED

JETSPEED

WML

WML

SR

SR

Business

Business

Logic

Logic

RMI

RMI

Servlet

s

Servlet

s

Servlet

s

Portal

Portal

Query

Query

-

-

related

related

Business Logic

Business Logic

WML

WML

WAP1.2

WAP1.2

HTTP1.1

HTTP1.1

WAP

WAP

Gateway

Gateway

WEB Server

WEB Ser

ver

TOMCAT

TOMCAT

JETSPEED

JETSPEED

WML

WML

SR

S&R

Business

Business

Logic

Logic

RMI

RMI

Servlet

s

Servlet

s

Servlet

s

Portal

Portal

Query

Query

-

-

related

related

Business Logic

Business Logic

WML

WML

Server

-

side

Business

Logic

Both the prototype and the S&R components are developed in Java. So, the integration has been realized by RMI (Remote Method Invocation).

In the following is described a possible search navigation.

The WAP client access to the Regnet system by the Regnet WAP Portal. The Portal Home Page (implemented by a Portlet) shows the main functionalities such as “What’s News”, “Events&Exibitions” and “Search&Browse”. When the user chooses the “Search&Browse” menu item, he gets a sequence of static pages that allow specifying the search to be performed.

When the user inserts the item to be searched, its request is sent to the server. On the server side the request is catch by a component (implemented by a servlet) that is responsible to transform the data provided by the user into the format (XML) supported by the S&R subsystem.

The S&R subsystem performs the search operations and then returns to the portal server-side business logic the results (again in XML format). These results are processed by the portal business logic and then the page containing the search results is generated and sent to the user.

3.6.1.3 Conclusion

Since the S&R Prototype is not yet available, the interaction has been simulated with a “dummy” S&R component. This simulation allows testing the RMI connection and the manipulation of XML data.

3.6.2 WEB Portal

3.6.2.1 Scope

The main aim of the Web Portal Prototype is to validate the overall architecture and the integration mechanism chosen to add components on the portal. Another aim is to define a Web Front End GUI for the user and to produce general graphical recommendation. These last tasks have been performed together with IMAC.

In the first prototype version, we choose to integrate the Portal with the Ontology Repository.

3.6.2.2 Architecture

The architecture adopted to develop the server-side business logic is the same already depicted in the paragraph 4.6.1.2. The only difference is related to the module responsible to generate the client-side code. To interact with a WAP user is necessary to manage WML pages while for Web user with HTML pages.

More details will be provided in the next days.

3.6.2.3 Conclusion

Conclusion will be added at the end of the Web Portal Prototype development.

3.7 Publication [SR]

3.7.1 Scope

Within the publication prototype the applicability of the following technologies and tools for usage with the Electronic Publisher was elaborated:

3.7.1.1 XSL
XSL is a standard recommended by the World Wide Web Consortium.

The first two parts of the language (XSLT and XPath) became a W3C Recommendation in November 1999. The full XSL Recommendation including XSL formatting became a W3C Recommendation in October 2001.

The Extensible Stylesheet Language (XSL) is a language for expressing stylesheets. Given a class of arbitrarily structured XML documents or data files, designers use an XSL stylesheet to express their intentions about how that structured content should be presented; that is, how the source content should be styled, laid out, and paginated onto some presentation medium, such as a window in a Web browser or a hand-held device, or a set of physical pages in a catalog, report, pamphlet, or book.

An XSL stylesheet processor accepts a document or data in XML and an XSL stylesheet and produces the presentation of that XML source content that was intended by the designer of that stylesheet.[http://www.w3.org/TR/xsl/]

XSL consists of three parts:

· a method for transforming XML documents

· a method for defining XML parts and patterns

· a method for formatting XML documents

XSL in terms of transforming XML into HTML, it is a language that can filter and sort XML data, a language that can address parts of an XML document, a language that can format XML data based on the data value, like displaying negative numbers in red, and a language that can output XML data to different devices, like screen, paper or voice.

3.7.1.2 Xerces

Xerces is a publicly-available XML parser from the Apache Software project. This parser can convert text XML files into DOM representations that can be further queried or manipulated by other XML-aware programs.

Xerces provides world-class XML parsing and generation. Fully-validating parsers are available for both Java and C++, implementing the W3C XML and DOM (Level 1 and 2) standards, as well as the de facto SAX (version 2) standard. The parsers are highly modular and configurable. Initial support for XML Schema (draft W3C standard) is also provided.

A Perl wrapper is provided for the C++ version of Xerces, which allows access to a fully validating DOM XML parser from Perl. It also provides for full access to Unicode strings, since Unicode is a key part of the XML standard.

A COM wrapper (also for Xerces-C) provides compatibility with the Microsoft MSXML parser.

The Xerces Java Parser 1.4.4 supports the XML 1.0 recommendation and contains advanced parser functionality, such as support for the W3C's XML Schema recommendation version 1.0, DOM Level 2 version 1.0, and SAX Version 2, in addition to supporting the industry-standard DOM Level 1 and SAX version 1 APIs.[http://xml.apache.org/xerces-j/index.html]

The rich generating and validating capabilities allow the Xerces-J Parser to be used for:

· Building XML-savvy Web servers.

· The next generation of vertical applications which will use XML as their data format.

· On-the-fly validation for creating XML editors.

· Ensuring the integrity of e-business data expressed in XML.

· Building truly internationalized XML applications.

Other XML parsing tools:

XML4J from IBM

IBM is a major contributor to Apache's Xerces-J code base. Version 1.4.2 of Xerces-J forms the basis for XML4J 3.2.1. IBM is a pioneer in XML technologies, with parsers that have been consistently highly rated since XML4J version 1.0 was released in 1998. The XML Parser for Java is a validating XML parser written in 100% pure Java.

expat - XML Parser Toolkit

Expat is an XML 1.0 parser written in C. It aims to be fully conforming. It is currently not a validating XML processor

XP

XP is an XML 1.0 parser written in Java. It is fully conforming: it detects all non well-formed documents. It is currently not a validating XML processor. However it can parse all external entities: external DTD subsets, external parameter entities and external general entities.

3.7.1.3 Xalan

Xalan is a publicly-available XSLT engine from the Apache Software project. This engine can transform XML files into other formats such as other XML files, XHTML, WML, etc., according to the specifications of an accompanying XSL file.
Xalan provides high-performance XSLT stylesheet processing. Xalan fully implements the W3C XSLT and XPath recommendations. The stylesheet processor is feature-rich and robust. The XPath Processor is useable as a stand-alone unit. Xalan uses the Bean Scripting Framework (BSF) to implement Java or script extensions, features multiple document output extensions, and we are working on data-binding extensions for SQL/JDBC and other data providers.

Xalan is currently available in Java, and available in Alpha form for C++.

3.7.1.4 Cocoon

Apache Cocoon is an XML publishing framework that raises the usage of XML and XSLT technologies for server applications to a new level. Designed for performance and scalability around pipelined SAX processing, Cocoon offers a flexible environment based on the separation of concerns between content, logic and style. A centralized configuration system and sophisticated caching top this all off and help you to create, deploy and maintain rock-solid XML server applications.

Cocoon interacts with most data sources, including: filesystems, RDBMS, LDAP, native XML databases, and network-based data sources. It adapts content delivery to the capabilities of different devices like HTML, WML, PDF, SVG, RTF just to name a few. Cocoon currently runs as a Servlet or from a powerful commandline interface. The chosen design of an abstracted environment gives you the freedom to implement your own concrete environment to suit your required functionality.

Web content generation is mostly based on HTML, but HTML doesn't separate the information from its presentation, mixing formatting tags, descriptive tags and programmable logic (both on server side and client side). Cocoon offers a different way of working, allowing content, logic and style to be separated out into different XML files, and uses XSL transformation capabilities to merge them.

Even if the most common use of Cocoon is the automatic creation of HTML through the processing of statically or dynamically generated XML files, Cocoon is also able to perform more sophisticated formatting, such as XSL:FO rendering to PDF files, client-dependent transformations such as WML formatting for WAP-enabled devices, or direct XML serving to XML and XSL aware clients.

The Cocoon model allows web sites to be highly structured and well-designed, reducing duplication efforts and site management costs by allowing different presentations of the same data depending on the requesting client (HTML clients, PDF clients, WML clients) and separating out different contexts with different requirements, skills and capacities. Cocoon allows better human resource management by giving each individual their job and reducing to a minimum the cross-talks between different working contexts.

To do this, the Cocoon model divides the development of web content into three separate levels:

· XML creation: The XML file is created by the content owners. They do not require specific knowledge on how the XML content is further processed - they only need to know about the particular chosen "DTD" or tagset for their stage in the process. (As one would expect from a fully generic XML framework, DTDs are not required in Cocoon, but can be used and validated against). This layer is always performed by humans directly, through normal text editors or XML-aware tools/editors.

· XML processing: The requested XML file is processed and the logic contained in its logicsheet(s) is applied. Unlike other dynamic content generators, the logic is separated from the content file.

XSL rendering: The created document is then rendered by applying an XSL stylesheet to it and formatting it to the specified resource type (HTML, PDF, XML, WML, XHTML, etc.)
3.7.2 Architecture

3.7.2.1 The publication process

The publication process is a complex workflow consisting of combined tasks that finally lead to the required publication. This publication can either be an end product, that will not further be edited or a prototype that can then be sold as new good in a shop. If users want to add new products to their shops in this solution of REGNET, they will have to enter them via the Data Generation Subsystem. Nevertheless the architecture of the EP module should allow a direct workflow with automatic redirection from the Electronic Publishing System to the repository of the shop to be implemented easily.

[image: image4.png]
Figure 1: Refined main tasks of the EP Subsystem

The Proof of concept prototype implements the key activities "handle layout" and "create Output".

The input of the EP Prototype are search results in XML format. The ResultSet will contain Topic Maps and records with the objects metadata. Within this prototype we used an AMICO Resultset containing 10 records, only with object data.

The Organization step is equated with so called the editResultset and the applyStoryboard functions in the EP technical architecture (REGNET Deliverable D2 Chapter 5.5.6 Electronic Publisher) The proof of concept prototype does not organize the Input Resultset, but processes it unsorted

This part of the process manages the multilinguality of the publication and not of the user interface of the EP Prototype. It is possible that associating of labels with particular fields in a record set is done by a "multilingual lookup" using stylesheets.

3.7.2.2 Layout

Each layout is determined through a specific stylesheet. The user can select different layouts. What he does in fact is selecting an XSL-stylesheet which will be applied to the ResultSet after the format has been selected. It should also be possible to upload user specific XSL-stylesheets and perform the transformation with them.

[image: image5.png]
A layout is the way how data is displayed. In the EP Prototype, three predefined layouts are available:

· A Catalogue Layout

· A Table Layout

· A Virtual Gallery Layout

The catalogue layout contains pictures of the artefacts beside of the description and is preluded by a directory.

[image: image6.jpg]
Figure 2: Example of a cataloque form of a RecordSet
A table is a listing of all records in the ResultSet. Labels (like AUTHOR: , CREATOR) are printed once on the top of the page and not separated for each record like in catalogues.
	Title
	Creator
	Time of creation
	Located at

	Scherdegen
	pecek
	1898
	Neumarkt

	Handtasche
	Gaukler
	1956
	Reichenhall

	Nudelsieb
	?
	1835
	Salzburg

Figure 3: Example of table form of a RecordSet
A virtual Gallerwill be implemented as a chaining of artefacts which is navigable by "forward" and "back" buttons.

3.7.2.3 Output/ Format

[image: image7.png]
In this step the user can choose the format for the publication prototype. In the EP Prototype PDF, HTML and SMIL will be supported. A chosen layout might not always match an applied file format. (Virual Gallery and PDF file format). In this case the system will ask the user to do a new selection.

3.7.2.4 Proof of concept prototype

The components of the framework as described in D2 are described below.

[image: image8.png]
Overview of Electronic Publishing Component Diagram

There have been several changes in the structure and naming of the components which is described as follows:

· Generator Component: The Generator component generates an XML structure from the input source (Resultset of the Search and Retrieval Subsystem) and is now represented by the Data Access Objects (see section 5.7).

· Record Editor: The Record Editor component manages the editing of the single records to be published.

· Storyboard Processor: The Storyboard Processor defines the LATCH principles to be applied to the publication. This component is hidden behind the public interface of the Electronic Publisher represented by the PublicationObject class.

· Transformer: The Transformer is the core component handling the XSLT transformations also using the Ontology Subsystem as Stylesheet repository. This component was renamed to Layouter to stress the point of the layouting according to a defined structure, e.g. Catalogue.

· Serializer: The functionality of the Serializer has also already been implemented in the Proof of concept prototype and is used to render an input XML structure into some other format like HTML or PDF. This component was renamed to Formatter to stress the point of reformatting the internal XML representation into a specified output format.

· Controller Component: The Controller Component handels the overall connection and the controll of all other subcomponents. Up to now the Controller functionality is done by the EPServlet (See figure). For that purpose the EPServlet implements a couple of methods.

3.7.3 Conclusion

The prototype shows, that the structuring and tools used for the Publishing Prototype were well suited for generating publication products. The performed tests have shown, that the setup and functionality of the prototype are capable of producing the publications in a reasonable timeframe.

In addition the trial phase has given valuable input in the design of the object model of the Electronic Publisher as described in section Erreur ! Source du renvoi introuvable..

However, there are still uncertainties in providing an easy to use user interface for the definition and application of LATCH based structuring and sorting of data as well as the integration of subsystems like Search and Retrieval and CH Data Management.

4 Design Model [VALT]

The design model is an object model describing the realization of use cases, and serves as an abstraction of the implementation model and its source code. The design model is used as essential input to activities in implementation and test.

4.1 Purpose

This report describes the design model comprehensively, in terms of how the model is structured into packages and what classes are in the model. If you are using packages, the document shows the model structure hierarchically. The report can be used to describe the entire design model at different stages:

· During elaboration, such as when you have identified the first classes and their objects.

· During construction, when the design is complete.

This report is used by various people interested in the design model, such as the software architect, use-case designers, designers, testers, reviewers, and managers.

4.2 Brief Outline

4.2.1 Introduction

An Introduction to the design model.

4.2.2 Design-Model Hierarchy

This section presents the design packages hierarchically, explains the dependencies among them, and shows the content of each package recursively.

If the model has several levels of packages, those at the top-level are presented first. The packages within these are presented next, and so on, all the way down to the packages at the bottom of the hierarchy. For each package include:

· Its Name.

· A Brief Description.

· A list of the classes owned by the package, including the name and a brief description of each class.

· A list of the relationships owned by the package, including the name and a brief description of each relationship.

· A list of the packages directly owned by the package, with each package presented in the same hierarchical manner as above.

4.2.3 Diagrams of the Design Model

The diagrams, primarily class diagrams, of the entire design model are included here. Note: These diagrams are not related to the use-case realizations or the architectural views of the model.

4.3 REGNET Portal [MOT]

4.3.1 Data Generation [SPAC]

4.3.1.1 Introduction

4.3.1.2 Design model hierarchy

4.3.1.3 Diagrams of the design model

4.3.2 Search and Retrieval [AIT]

4.3.2.1 Introduction

4.3.2.2 Design model hierarchy

4.3.2.3 Diagrams of the design model

4.3.3 E-Business [ZEUS]

4.3.3.1 Introduction

4.3.3.2 Design model hierarchy

4.3.3.3 Diagrams of the design model

4.4 Cultural heritage data management [SPAC]

4.4.1 Repository management [SPAC]

4.4.1.1 Introduction

4.4.1.2 Design model hierarchy

4.4.1.3 Diagrams of the design model

4.4.2 Reference system [AIT]

4.4.2.1 Introduction

4.4.2.2 Design model hierarchy

4.4.2.3 Diagrams of the design model

4.5 E-Business data management [ZEUS]

4.5.1 Catalogue management [ZEUS]

4.5.1.1 Introduction

4.5.1.2 Design model hierarchy

4.5.1.3 Diagrams of the design model

4.5.2 Procurement and Delivery [VALT]

4.5.2.1 Introduction

4.5.2.2 Design model hierarchy

4.5.2.3 Diagrams of the design model

4.6 Knowledge Base Access [SI]

4.6.1 Introduction

4.6.2 Design model hierarchy

4.6.3 Diagrams of the design model

4.7 Electronic publisher [SR]

4.7.1 Introduction

The design model of the electronic publisher follows the activity diagram shown below:

[image: image9.png]
The activities are a detailed view of the activity digram of D2 (deliverable 2). In a technical sense they are structured in the annotated steps: input, organization, multilinguality, layout and output.

The processing steps are described as follows:

· Input: The input of the Electronic Publisher are encoded in XML format. These may be the ResultSets of the Search and Retrieval subsystem accompanied by XTM documents as well as external data like price information or other descriptive text.
· Organization: This step is equated with so called the applyStoryboard function in the EP technical architecture of D2. With the help of XSL-Stylesheets the ResultSet and other external data is prepared for publishing, by the way of sorting and grouping the data according to the LATCH principles.

· Multilinguality: This part of the process manages the multilinguality of the publication and not of the user interface of the EP Prototype. Multilingual labels are associated with a record element which is performed by a "multilingual lookup" using stylesheets.

· Layout: In the 1st REGNET version three formats will be supported: catalogue, table and virtual gallery. Each layout is determined through a specific stylesheet. The user can select different layouts. What he does in fact is selecting an XSL-stylesheet which will be applied to the ResultSet after the format has been selected. It should also be possible to upload user specific XSL-stylesheets and perform the transformation with them.

· Output: In this step the user can choose the format for the publication prototype. In the EP Prototype PDF, HTML and SMIL will be supported. A chosen layout might not always match an applied file format. (Virual Gallery and PDF file format). In this case the system will ask the user to do a new selection.

The following table shows the mapping between the Use Cases of D2 and the processing steps shown in the above acitivity diagram.

	UC Identifier
	Use Case
	Processing Step

	UC 5.5
	edit resultset
	input

	UC 5.5.1
	delete record
	input

	UC 5.5.2
	edit single record
	input

	UC 5.6
	add storyboard
	organization

	UC 5.7
	create output
	layout, output

	UC 5.7.1
	create PDF output
	output

	UC 5.7.2
	create SMIL output
	output

	UC 5.7.3
	create XHTML output
	output

	UC 5.8
	create printer-friendly version
	output

	UC 5.9
	generate product
	layout

	UC 5.10
	publish a theme
	layout

	UC 5.10.1
	use theme storyboard
	organization

	UC 5.11
	create an exhibition
	layout

	UC 5.12
	create a virtual gallery
	layout

	UC 5.13
	create catalogue
	layout

4.7.2 Design model hierarchy

The following diagram shows the main package structure of the Electronic Publisher.

[image: image10.png]
4.7.2.1 Authoring

The authoring package contains the visual parts (views) of the Electronic Publisher currently implemented as a servlet (EPServlet).

4.7.2.2 Publication

The publication package contains the interfaces for external access to the publishing functionality. The functionality is splitted into three classes: PublicationObjectHome, PublicationObject, POConstants. This package aggregates functionality for defining a publication and producing products like catalogues etc.

The PublicationObjectHome class defines life cycle methods for the management of PublicationObjects.

The PublicationObject class defines all properties and functionalities necessary to define and produce a publication.

The POConstants class defines supported functionalities and multilingual lookups for the formats, layouts and other functionalities provided by the Electronic Publisher.

4.7.2.3 Layout

The layout package contains the functionality for producing publications according to a specific layout, i.e. Catalogue, Table, Virtual Gallery. The actual Layouter is produced by a LayouterFactory according to the type of publication to produce. In the current version the layout is performed by a XSLLayouter which uses Stylesheets for processing a layout. In addition, Layouters using Formating Objects, Java Classes, templating solutions like velocity or other renderers might be used.

4.7.2.4 Formatter

The formatter package contains the functionality for producing different output formates like HTML, PDF or SMIL. Similar to Layouters, Formatters are produced through a factory pattern. In a first version the formatting is performed through Stylesheets (XSLFormatter class).

4.7.2.5 DAO (Data Access Objects)

The dao package contains the functionality for handling different data sources in a uniform way by hiding the complexity of possible communication overheads or SOAP handling. The data input / storage is thereby done through the interface of the abstract Java class InputStream. The functionality might be particular interesting for connecting other REGNET subsystems. A particular StorageHandler is produced through the StorageHandlerFactory according to the input source.

4.7.3 Diagrams of the design model

The following diagrams show the detailled design of the Electronic Publisher design model.

[image: image11.png]
The publication package contains the external accessible RMI interfaces. The data types used are XML-Schema compatible which will allow an easy porting to SOAP interfaces. A detailed description of the interfaces are given in section 3.2.5.

[image: image12.png]
The dao package supports the publication package with data access functionalities. The diagram shows a selection of possible StorageHandlers that might be useful for the Electronic Publisher. The interfaces are designed according to the factory pattern.

[image: image13.png]
Similar to the dao package the formatter package provides functionality for generating output according to a specific data format like PDF, HTML. The package is strucutred according to the factory pattern.

[image: image14.png]
The layouter package provides functionality for the formatting of content according to a specific structure, e.g. Catalogue or Table. It is structured according to the factory pattern.

5 Data Model

The data model is a subset of the implementation model which describes the logical and physical representation of persistent data in the system. It also includes any behavior defined in the database, such as stored procedures, triggers, constraints, etc.

The data model is used to describe the logical and possibly physical structure of the persistent information managed by the system. The data model is specifically needed where the persistent data structure cannot be automatically and mechanically derived from the structure of persistent classes in the design model. It is used to define the mapping between persistent design classes and persistent data structures, and to define the persistent data structures themselves. It is most frequently needed when the design model is an object model and the persistent storage mechanism is based upon a relational database, although it is generally needed whenever the persistent storage mechanism is based upon some non-object-oriented technology.

The data model UML representation is a top-level Package stereotyped as «data model», containing a set of Components which represent the physical storage of persistent data in the system.

5.1.1 Data model hierarchy

5.1.2 Diagrams of the data model

6 Implementation Model [VALT]

The implementation model is a collection of components, and the implementation subsystems that contain them. Components include both deliverable components, such as executables, and components from which the deliverables are produced, such as source code files.

The implementation model is a composite, comprehensive artifact which encompasses all artifacts needed to build and manage the system in the run-time environment.

6.1 Overview
[This subsection names and defines the various layers and their contents, the rules that govern the inclusion to a given layer, and the boundaries between layers. Include a component diagram that shows the relations between layers.]

6.2 Layers
[For each layer, include a subsection with its name, an enumeration of the subsystems located in the layer, and a component diagram.]

7 Deployment Plan [AIT]

The Deployment Plan describes the set of tasks necessary to install and test the developed product such that it can be effectively transitioned to the user community.

7.1 Deployment Planning
[Describe all activities performed in deploying the product to the customer. Activities include planning, beta testing, preparing items to be delivered, packaging, shipping, installation, training, and support.]

7.1.1 Responsibilities

[Identify the responsibilities of both the customer and the development team in preparing for deployment. Of particular relevance in this section is the description of the customer’s involvement in acceptance tests and the process for handling any discrepancies.]

7.1.2 Schedule

[Describe the schedule and milestones to conduct the deployment activities. Deployment milestones need to conform to the project milestones.

Take into account the following Deployment workflow details:

· Planning the Deployment
· Developing the Supporting Material

· Managing the Acceptance Tests

· Acceptance Testing at the Development Site

· Acceptance Testing at the Deployment Site

· Producing the Deployment Unit

· Managing the Beta Program

· Managing the Product Mass Production and Packaging

· Making the Product Accessible Over the Internet]

7.2 Resources

[List the resources and their sources required to carry out the planned deployment activities.]

7.2.1 Facilities

[As applicable, describe the facilities required to test and deploy the software. Facilities may include special buildings or rooms with raised flooring, power requirements, and special features to support privacy and security requirements.]

7.2.2 Hardware

[Identify the hardware required to run and support the software. Specify model, versions, and configurations. Provide information about manufacturer support and licensing.]

7.2.3 The Deployment Unit

[List the software and documentation provided as part of the deliverable product.]

7.2.3.1 Support Software

[As applicable, describe all software needed to support the deliverable product, such as tools, compilers, test tools, test data, utilities, Configuration Management tools, databases, data files, and so on.]

7.2.3.2 Support Documentation

[As applicable, describe the documentation required to support the delivered product, including design descriptions, test cases and procedures, user manuals, and so on.]

7.2.3.3 Support Personnel

[As applicable, describe the personnel, and their skill levels, required to support the deliverable product.]

7.3 Training

[Describe the plan and inputs for training the end users such that they can use and adapt the product as required.]

8 Design pattern

8.1 Java Server Pages Model 2 Architecture

This design pattern comes from J2EE blueprint. The Javasoft blueprint, "Developing Enterprise Applications with the Java 2 Platform, Enterprise Edition, describes the architectural tiers of a J2EE application and suggests good design practices that may be used.

This architecture uses the Model View Controller paradigm to separate the different areas of concern. The model is a series of Java beans. The view is the JSPs and the controller is the servlet. The JSPs contain no logic other than that required to get information from the java Java beans and serve it up in html. All the logic is contained in the servlet. The and the model information is encapsulated in the java beans. The servlet receives a request, retrieves data from the applicative tier, instantiates the java Java beans, hands them off to the JSPs and passes control to a JSP that provides the response.

 � �

rn_ir22v02_valt_sr.doc
REGNET IST-2000-26336
Page 3 of 36

_1072526614.doc
[image: image1.emf]

WAP1.2

WAP1.2

HTTP1.1

HTTP1.1

WAP

WAP

Gateway

 Gateway

WEB Server

WEB Server

TOMCAT

TOMCAT

JETSPEED

JETSPEED

WML

WML

SR

SR

Business

Business

Logic

Logic

RMI

RMI

Servlet

s

Servlet

s

Servlet

s

Portal

Portal

Query

Query

-

-

related

related

Business Logic

Business Logic

WML

WML

WAP1.2

WAP1.2

HTTP1.1

HTTP1.1

WAP

WAP

Gateway

 Gateway

WEB Server

WEB Server

TOMCAT

TOMCAT

JETSPEED

JETSPEED

WML

WML

SR

S&R

Business

Business

Logic

Logic

RMI

RMI

Servlet

s

Servlet

s

Servlet

s

Portal

Portal

Query

Query

-

-

related

related

Business Logic

Business Logic

WML

WML

Server-side Business Logic

_1072627442.doc
[image: image1.png]

_1069576158.doc

Procurement system

Product catalogue

Apache Soap Server

JSP

Portal simulator

Database

Applicative Tier

Web Tier

SQL

Servlet

Java

classes

SOAP

Tomcat

Java Bean

