CH Data Management Development

XML Database Validation

[image: image1.jpg]REG et

Cultural Heritage in FREEGional /7 T works

REGNET-IST-2000-26336

	Project acronym
	REGNET
	Contract nr.
	IST-2000-26336

	Work package
	WP 2 Implementation of the System and reparation of Services and Product Generation

	Task
	T 2.2.2: CH Data Management Development

	Date of delivery
	2001-11-13

	Code name
	
	Version 01 draft (final (

	Objective
	XML Databases Validation

	Distribution Type
	Restricted

	Authors (Partner)
	CERT

	Contact Person
	Dimitrios.Tzovaras@iti.gr

	Keywords List
	

	Version
	Date
	Log

	01
	2001-11-13
	First Version

Table of Contents

41
Introduction

42
XML

42.1
Structuring XML

52.2
Querying XML

63
Databases

63.1
Introduction

73.2
Data-centric Model

83.3
Document-centric model

83.4
Data-centric model VS Document-centric model

93.5
Storing and Retrieving Data

93.5.1
Transferring Data

103.5.2
Mapping Documents to Databases

103.5.3
Storing Data in a Native XML Database

113.6
Storing and Retrieving Documents

113.6.1
Simple Document Storage Systems

113.6.2
Native XML Database

134
XML Database Products

134.1
Native XML Databases

144.1.1
4Suite, 4Suite Server

144.1.2
Birdstep DataBase Engine

144.1.3
DBDOM

154.1.4
DbXML

164.1.5
Exist

164.1.6
EXtc

164.1.7
Extensible Information Server (XIS)

174.1.8
GoXML DB

174.1.9
Infonyte XQL Suite (formerly PDOM)

174.1.10
Ipedo XML Database

184.1.11
Lore

184.1.12
Neocore XML Management System

184.1.13
Nimble Integration Suite

194.1.14
Ozone

194.1.15
SIM (Structured Information Manager)

194.1.16
Tamino

204.1.17
TEXTML Server

204.1.18
Virtuoso

204.1.19
Xfinity Server

214.1.20
X-Hive/DB

214.2
XML Servers

214.2.1
Castor

224.2.2
MatriXML

224.2.3
Rhythmyx Integrator

234.2.4
Total-e-Business (formerly Bluestone XML-Server)

234.2.5
XA-BizDoc Server

244.2.6
XML Portal Server (XPS)

244.3
XML Application Servers

244.3.1
AxKit

254.3.2
Cache

254.3.3
Cocoon

254.3.4
ColdFusion

264.3.5
DataChannel Server (formerly Rio)

264.3.6
Enhydra

274.3.7
Noetix Web Query

274.3.8
Rhythmyx Content Manager

274.3.9
SQml Web and SQml Publisher

274.3.10
Zope

 Introduction

This document presents a detailed evaluation and validation of the existing XML database technologies. The architecture types of XML databases are presented first, followed by an exhaustive presentation of the commercial and open source XML database products.

From this presentation it can easily be concluded that the adoption of the dbXML technology is the most appropriate for the objectives of the REGNET project since it combines the required functionality in conjunction with the obvious advantage of being “open source”.

1 XML

XML stands for eXtensible Markup Language. XML is a meta-markup language developed by the World Wide Web Consortium (W3C) to deal with a number of the shortcomings of HTML. As more and more functionality was added to HTML to account for the diverse needs of users of the Web, the language began to grow increasingly complex and unwieldy. The need for a way to create domain-specific markup languages that did not contain all the cruft of HTML became increasingly necessary and XML was born.

The main difference between HTML and XML is that whereas in HTML the semantics and syntax of tags is fixed, in XML the author of the document is free to create tags whose syntax and semantics are specific to the target application. Also the semantics of a tag is not tied down but is instead dependent on the context of the application that processes the document. The other significant difference between HTML and XML is that an XML document must be well formed.

Although the original purpose of XML was as a way to mark up content, it became clear that XML also provided a way to describe structured data thus making it important as a data storage and interchange format. XML provides many advantages as a data format over others, including:

1. Built in support for internationalisation due to the fact that it utilizes Unicode.

2. Platform independence.

3. Human readable format makes it easier for developers to locate and fix errors than with previous data storage formats.

4. Extensibility in a manner that allows developers to add extra information to a format without breaking applications that where based on older versions of the format.

5. Large number of off-the-shelf tools for processing XML documents already exists.

1.1 Structuring XML

Since XML is a way to describe structured data there should be a means to specify the structure of an XML document. Document Type Definitions (DTDs) and XML Schemas are different mechanisms that are used to specify valid elements that can occur in a document, the order in which they can occur and constrain certain aspects of these elements. An XML document that conforms to a DTD or schema is considered to be valid. Below is listing of the different means of constraining the contents of an XML document.

1. Document Type Definitions (DTD): DTDs were the original means of specifying the structure of an XML document and a holdover from XML's roots as a subset of the Standardized and General Markup Language (SGML). DTDs have a different syntax from XML and are used to specify the order and occurrence of elements in an XML document.
2. XML Data Reduced (XDR): DTDs proved to be inadequate for the needs of users of XML due to a number of reasons. The main reasons behind the criticisms of DTDs were the fact that they used a different syntax than XML and their non-existent support for data types. XDR, a recommendation for XML schemas, was submitted to the W3C by the Microsoft Corporation as a potential XML schema standard, which was eventually rejected. XDR tackled some of the problems of DTDs by being XML based as well as supporting a number of data types analogous to those used in relational database management systems and popular programming languages.
3. XML Schema Definitions (XSD): The W3C XML schema recommendation provides a sophisticated means of describing the structure and constraints on the content model of XML documents. W3C XML schema support more data types than XDR, allow for the creation of custom data types, and support object oriented programming concepts like inheritance and polymorphism.

1.2 Querying XML

It is sometimes necessary to extract subsets of the data stored within an XML document. A number of languages have been created for querying XML documents including Lorel, Quilt, UnQL, XDuce, XML-QL, XPath, XQL, XQuery and YaTL. Since XPath is already a W3C recommendation while XQuery is on its way to becoming one, the focus of this section will be on both these languages. Both languages can be used to retrieve and manipulate data from an XML document.

1. XML Path Language (XPath): XPath is a language for addressing parts of an XML document that utilizes a syntax that resembles hierarchical paths used to address parts of a file system or URL. XPath also supports the use of functions for interacting with the selected data from the document. It provides functions for the accessing information about document nodes as well as for the manipulation of strings, numbers and Booleans. XPath is extensible with regards to functions, which allows developers to add functions that manipulate the data retrieved by an XPath query to the library of functions available by default. XPath uses a compact, non-XML syntax in order to facilitate the use of XPath within URIs and XML attribute values (this is important for other W3C recommendations like XML schema and XSLT that use XPath within attributes). XPath operates on the abstract, logical structure of an XML document, rather than its surface syntax. XPath is designed to operate on a single XML document which it views as a tree of nodes and the values returned by an XPath query are considered conceptually to be nodes. The types of nodes that exist in the XPath data model of a document are text nodes, element nodes, attribute nodes, root nodes, namespace nodes, processing instruction nodes, and comment nodes.

2. XML Query Language (XQuery): XQuery is an attempt to provide a query language that provides the same breadth of functionality and underlying formalism as SQL does for relational databases. XQuery is a functional language where each query is an expression. XQuery expressions fall into seven broad types; path expressions, element constructors, FLWR expressions, expressions involving operators and functions, conditional expressions, quantified expressions or expressions that test or modify data types. The syntax and semantics of the different kinds of XQuery expressions vary significantly which is a testament to the numerous influences in the design of XQuery. XQuery has a sophisticated type system based on XML schema data types and supports the manipulation of the document nodes unlike XPath. Also the data model of XQuery is not only designed to operate on a single XML document but also a well-formed fragment of a document, a sequence of documents, or a sequence of document fragments.
W3C is also working towards creating an alternate version of XQuery that has the same semantics but uses XML based syntax instead called XQueryX.
2 Databases

2.1 Introduction

An XML document is a database only in the strictest sense of the term. That is, it is a collection of data. In many ways, this makes it no different from any other file -- after all, all files contain data of some sort. As a "database" format, XML has some advantages. For example, it is self-describing (the markup describes the data), it is portable (Unicode), and it can describe data in tree or graph structures. It also has some disadvantages. For example, it is verbose and access to the data is slow due to parsing and text conversion.

A more useful question to ask is whether XML and its surrounding technologies constitute a "database" in the looser sense of the term -- that is, a database management system (DBMS). The answer to this question is, "Sort of." On the plus side, XML provides many of the things found in databases: storage (XML documents), schemas (DTDs, XML schema languages), query languages (XQuery, XPath, XQL, XML-QL, QUILT, etc.), programming interfaces (SAX, DOM, JDOM), and so on. On the minus side, it lacks many of the things found in real databases: efficient storage, indexes, security, transactions and data integrity, multi-user access, triggers, queries across multiple documents, and so on. Thus, while it may be possible to use an XML document or documents as a database in environments with small amounts of data, few users, and modest performance requirements, this will fail in most production environments, which have many users, strict data integrity requirements, and the need for good performance.

A good example of the type of "database" for which an XML document is suitable is an “.ini” file -- that is, a file that contains application configuration information. It is much easier to invent a small XML language and write a SAX application for interpreting that language than it is to write a parser for comma-delimited files. In addition, XML allows you to have nested entries, something that is harder to do in comma-delimited files. However, this is hardly a database, since it is read and written linearly, and then only when the application is started and ended.

Examples of more sophisticated data sets for which an XML document might be suitable as a database are personal contact lists (names, phone numbers, addresses, etc.), browser bookmarks, etc. However, given the low price and ease of use of databases like dBASE and Access, there seems little reason to use an XML document as a database even in these cases. The only real advantage of XML is that the data is portable, and this is less of an advantage than it seems due to the widespread availability of tools for serializing databases as XML.

Until now, there is a dichotomy in how XML is used in industry. On one hand there is the document-centric model of XML where XML is typically used as a means to creating semi-structured documents with irregular contents that are meant for human consumption. An example of document-centric usage of XML is XHTML, which is the XML, based successor to HTML.

The other primary usage of XML is in a data-centric model. In a data-centric model, XML is used as storage or interchange format for data that is structured, appears in a regular order and is most likely to be machine processed instead of read by a human. In a data-centric model, the fact that the data is stored or transferred as XML is typically incidental since it could be stored or transferred in a number of other formats which may or may not be better suited for the task depending on the data and how it is used. An example of a data-centric usage of XML is SOAP. SOAP is an XML based protocol used for exchanging information in a decentralized, distributed environment. A SOAP message consists of three parts: an envelope that defines a framework for describing what is in a message and how to process it, a set of encoding rules for expressing instances of application-defined data types, and a convention for representing remote procedure calls and responses.

In both models where XML is used, it is sometimes necessary to store the XML in some sort of repository or database that allows for more sophisticated storage and retrieval of the data especially if the XML is to be accessed by multiple users.

2.2 Data-centric Model

In a data-centric model where data is stored in a relational database or similar repository; one may want to extract data from a database as XML, store XML into a database or both. For situations where one only needs to extract XML from the database one may use a middleware application or component that retrieves data from the database and returns it as XML. Middleware components that transform relational data to XML and back vary widely in the functionality they provide and how they provide it. For instance, Microsoft's ADO.NET provides XML integration to such a degree that results from queries on XML documents or SQL databases can be accessed identically via the same API. Some like Merant's jxTransformer require the user to specify how the results of a SQL query should be converted to XML via a custom query while others like IBM's Database DOM require the user to create a template file that contains the SQL to XML mappings for the query to be performed. Another approach is the one taken by DB2XML where a default mapping of SQL results to XML data exists that cannot be altered by the user. Middleware components also vary in how the sophistication of their user interface that may vary from practically non-existent (interaction done via programmatically using APIs) to interaction being via a sophisticated graphical user interfaces.

The alternative to using middleware components to retrieve or store XML in a database is to use an XML-enabled database that understands how to convert relational data to XML and back. Currently, the most known relational database products all support retrieving and storing XML in one form or another. More specifically:

· IBM's DB2 uses the DB2 XML Extender. The DB2 extender gives one the option to store an entire XML document and its DTD as a user-defined column [of type XMLCLOB, XMLVARCHAR or XMLFile] or to shred the document into multiple tables and columns. XML documents can then be queried with syntax that is compliant with W3C XPath recommendation. Updating of XML data is also possible using stored procedures.

· Oracle has completely integrated XML into its Oracle 9i database as well as the rest of its family of products. XML documents can be stored as whole documents in user-defined columns [of type XMLType or CLOB/BLOB] where they can be extracted using XMLType functions such as Extract() or they can be stored as decomposed XML documents that are stored in object relational form which can be reconstituted using the XML SQL Utility (XSU) or SQL functions and packages. For searching XML, Oracle provides Oracle Text which can be used to index and search XML stored in VARCHAR2 or BLOB variables within a table via the CONTAINS and WITHIN operators used in collusion with SQL SELECT queries. XMLType columns can be queried by selecting them through a programming interface (e.g. SQL, PL/SQL, C, or Java), by querying them directly and using extract() and/or existsNode() or by using Oracle Text operators to query the XML content. The extract() and existsNode() functions use XPath expressions for querying XML data. Oracle 9i also allows one to create relational views on XML documents stored in XMLType columns, which can then be queried using SQL. The columns in the table are mapped to XPath expressions that query the document in the XMLType column.

· Microsoft's SQL Server 2000 also supports XML operations being performed on relational data. XML data can be retrieved from relational tables using the FOR XML clause. The FOR XML clause has three modes: RAW, AUTO and EXPLICIT. RAW mode sends each row of data in the result set back as a XML element named "row" and with each column being an attribute of the "row" element. AUTO mode returns query results in a nested XML tree where each element returned is named after the table it was extracted from and each column is an attribute of the returned elements. The hierarchy is determined based on the order of the tables identified by the columns of the SELECT statement. With EXPLICIT mode the hierarchy of the XML returned is completely controlled by the query, which can be rather complex. SQL Server also provides the OPENXML clause which to provide a relational view on XML data. OPENXML allows XML documents placed in memory to be used as parameters to SQL statements or stored procedures. Thus OPENXML is used to query data from XML, join XML data with existing relational tables, and insert XML data into the database by "shredding" it into tables. Also W3C XML schema to can be used to provide mappings between XML and relational structures. These mappings are called XML views and allow relational data in tables to be viewed as XML that can be queried using XPath.

As can be seen from the above descriptions, there is currently no standard way to access XML from relational databases. This may change with the development of the SQL/XML standard currently being developed by the SQLX group.

2.3 Document-centric model

Document-centric documents are (usually) documents that are designed for human consumption. Examples are books, email, advertisements, and almost any hand-written XHTML document. They are characterized by less regular or irregular structure, larger grained data (that is, the smallest independent unit of data might be at the level of an element with mixed content or the entire document itself), and lots of mixed content. The order in which sibling elements and PCDATA occurs is almost always significant.

Content management systems are typically the tool of choice when considering storing, updating and retrieving various XML documents in a shared repository. A content management system typically consists of a repository that stores a variety of XML documents, an editor and an engine that provides one or more of the following features:

· Version, revision and access control

· Ability to reuse documents in different formats

· Collaboration

· Web publishing facilities

· Support for a variety of text editors (e.g. Microsoft Word, Adobe Framemaker, etc)

· Indexing and search capabilities

Content management systems have been primarily of benefit for workflow management in corporate environments where information sharing is vital and as a way to manage the creation of web content in a modular fashion allowing web developers and content creators to perform their tasks with less interdependence than exists in a traditional web-authoring environment. Examples of XML based content management systems are SyCOMAX, Content@, Frontier, Entrepid, XDisect, and SiberSafe.

2.4 Data-centric model VS Document-centric model

Perhaps the most important factor in choosing a database is whether you are using the database to store data or documents. For example, is XML used simply as a data transport between the database and an application? Or is its use integral, as in the case of XHTML documents? This is usually a matter of intent, but it is important because all data-centric documents share a number of characteristics, as do all document-centric documents, and these influence how XML is stored in the database.

In practice, the distinction between data-centric and document-centric documents is not always clear. For example, an otherwise data-centric document, such as an invoice, might contain large-grained, irregularly structured data, such as a part description. And an otherwise document-centric document, such as a user's manual, might contain fine-grained, regularly structured data (often metadata), such as an author's name and a revision date. Other examples include legal and medical documents, which are written as prose but contain discrete pieces of data, such as dates, names, and procedures, and often must be stored as complete documents for legal reasons.

In spite of this, characterizing your documents as data-centric or document-centric will help you decide what kind of database to use. As a general rule, data is stored in a traditional database, such as a relational, object-oriented, or hierarchical database, and documents are stored in a native XML database (a database designed especially for storing XML) or a content management system (an application designed to manage documents and built on top of a native XML database).

These rules are not absolute. Data -- especially semi-structured data -- can be stored in native XML databases and documents can be stored in traditional databases when few XML-specific features are needed. Furthermore, the boundaries between traditional databases and native XML databases are beginning to blur, as traditional databases add native XML capabilities and native XML databases support the storage of document fragments in external (usually relational) databases.

2.5 Storing and Retrieving Data

Data of the kind that is found in data-centric documents can originate both in the database (in which case you want to expose it as XML) and outside the database (in which case you want to store it in a database). An example of the former is the vast amount of legacy data stored in relational databases; an example of the latter is scientific data gathered by a measurement system and converted to XML.

Thus, depending on your needs, you may need software that transfers data from an XML document to the database, from the database to an XML document, or both. This software can either be built into the database, in which case the database is said to be XML-enabled, or it can be data transfer middleware designed especially for this purpose.

2.5.1 Transferring Data

When transferring data from an XML document to the database, it is often acceptable to discard information about the document, such as its name and DTD. It is also acceptable to discard information about the document's physical structure, such as entity definition and usage, the way in which binary data is stored (Base64 v. unparsed entity v. something else), CDATA sections, and encoding information. It may even be acceptable to discard logical structure, particularly processing instructions and the order in which attribute values and sibling elements occur.

Similarly, when transferring data from the database to an XML document, the resulting XML document is likely to contain no CDATA or entity usage and the order in which sibling elements and attributes appear is likely to be the order in which the data was returned by the database. Although this may seem shocking at first, it is quite reasonable. For example, consider the case in which XML is used to transfer a sales order from one database to another. In this case, it really doesn't matter whether the sales order number is stored in the document before or after the sales order date, nor does it matter if the customer's name is stored in a CDATA section, an external entity, an attribute, or directly as PCDATA. All that is important is that the relevant data is transferred from the first database to the second. Thus, the data transfer software needs to consider hierarchical order (which groups the information about a single sales order) and little else.

One consequence of ignoring information about the document and its physical structure is that "round-tripping" a document -- that is, storing the data from a document in the database and then reconstructing the document from that data -- often results in a different document, even in the canonical sense of the term. Whether this is acceptable depends on your needs and might influence your choice of database and data transfer software.

2.5.2 Mapping Documents to Databases

Software that transfers data between an XML document and a database relies on a mapping between the document and the database. Such mappings fall into two general categories: template-driven and model-driven:

1. Template-Driven Mappings: In a template-driven mapping, there is no predefined mapping between the document and the database. Instead, you embed product-specific commands in a template that is processed by the data transfer software. Template-driven mappings can be tremendously flexible, although the feature set varies from product to product.

2. Model-Driven Mappings: In a model-driven mapping, the data in an XML document is modelled according to some predefined model and this is mapped either implicitly or explicitly to the database. What is lost in flexibility is gained in simplicity, since the system, which is based on a concrete model, generally does more work for the user than in a template-driven mapping.

2.5.3 Storing Data in a Native XML Database

It is also possible to store data in XML documents in a native XML database. There are several reasons to do this. The first of these is when your data is semi-structured. That is, it has a regular structure, but that structure varies enough that mapping it to a relational database results in either a large number of columns with null values (which wastes space) or a large number of tables (which is inefficient). Although semi-structured data can be stored in object-oriented and hierarchical databases, you can also choose to store it in a native XML database in the form of an XML document.

A second reason to store data in a native XML database is retrieval speed. Depending on how the native XML database physically stores data, it might be able to retrieve data much faster than a relational database. The reason for this is that some storage strategies used by native XML databases store entire documents together physically or use physical (rather than logical) pointers between the parts of the document. This allows the documents to be retrieved either without joins or with physical joins, both of which are faster than the logical joins used by relational databases.

A third reason to store data in a native XML database is that you want to exploit XML-specific capabilities, such as executing XML queries. Given that few data-centric applications need this today and that relational databases are implementing XML query languages, this reason is less compelling.

One problem with storing data in a native XML database is that most native XML databases can only return the data as XML. (A few support the binding of elements or attributes to application variables.) If your application needs the data in another format (which is likely), it must parse the XML before it can use the data. This is clearly a disadvantage for local applications that use a native XML database instead of a relational database, as it incurs overhead not found in (for example) an ODBC application. It is not a problem with distributed applications that use XML as a data transport, since they must incur this overhead regardless of what type of database is used.

Storing and Retrieving Documents

Document-centric documents are usually written by hand in XML or some other format, such as RTF, PDF, or SGML, which is then converted to XML. Unlike data-centric documents, they usually do not originate in the database. Thus, if you work with document-centric documents, you probably need a way to store and retrieve documents, as well as ways to convert them to and from other formats.

2.5.4 Simple Document Storage Systems

If you have a simple set of documents, such as a small documentation set, you have several choices of how to store them. The easiest thing to do is store them in the file system and use tools like “grep” to query them. (Full text searches of XML documents are obviously inaccurate, as they cannot easily distinguish markup from text and cannot understand entity usage. However, in a small system, such inaccuracies may be acceptable.) If you want simple transaction control, you can place your documents in a version control system such as CVS or RCS.

A slightly more sophisticated option is to store documents as BLOBs in a relational database. This provides a number of the advantages of databases: transactional control, security, multi-user access, and so on. In addition, many relational databases have tools for searching text and can do such things as full-text searches, proximity searches, synonym searches, and fuzzy searches. Some of these tools are being made XML-aware, which will eliminate the problems involved with searching XML documents as pure text.

When you store XML documents as BLOBs, you can also easily implement your own simple XML-aware indexing, even if the database cannot index XML. One way to do this is to create two tables, an index table (known as a side table in DB2, where the idea originated) and a document table. The document table contains a primary key and a BLOB column in which the document is stored. The index table contains a column containing the value to be indexed and a foreign key pointing to the primary key of the document table.

When the document is stored in the database, it is searched for all instances of the element or attribute being indexed. Each instance is stored in the index table, along with the primary key of the document. The value column is then indexed, which allows an application to quickly search for a particular element or attribute value and retrieve the corresponding document.

2.5.5 Native XML Database

What actually constitutes a native XML database has been a topic of some debate in various forums, which has been compounded by the blurred lines that many see between XML-enabled databases, XML query engines, XML servers and native XML databases. The most coherent definition so far is one that was reached by consensus amongst members of the XML:DB mailing list which defines a native XML database as “a database that has an XML document as its fundamental unit of (logical) storage and defines a (logical) model for an XML document, as opposed to the data in that document, and stores and retrieves documents according to that model”. At a minimum, the model must include elements, attributes, PCDATA, and document order.

Actually, native XML databases are most clearly useful for storing document-centric documents. This is because native XML databases preserve things like document order, processing instructions, comments, CDATA sections, and entity usage, while XML-enabled databases do not. Furthermore, native XML databases support XML query languages, allowing you to ask questions like, "Get me all documents in which the third paragraph after the start of the section contains a bold word." Such queries are clearly difficult to ask in a language like SQL.

Native XML databases are also useful for storing documents whose "natural format" is XML, regardless of what those documents contain. For example, suppose XML documents are used for messaging in an e-commerce system. Although these documents are probably data-centric, their natural format as messages is XML. Thus, when they are stored in a message queue, it makes more sense to use a message queue built on a native XML database than a non-XML database. The native XML database offers XML-specific capabilities, such as XML query languages, and will usually be faster at retrieving whole messages. Another example of this sort of usage is a Web cache.

Several other uses for native XML databases are to store semi-structured data, to increase retrieval speed in certain situations, and to store documents that do not have DTDs (well-formed documents). The last is something that non-XML databases do not do well. That is, a native XML database can accept, store, and understand any XML document without prior configuration. Transferring the data in an XML document to a relational or object-oriented database requires you to first create a mapping and a database schema. The lack of prior configuration is an advantage in applications like Web search engines, where no single DTD or set of DTDs applies to all the documents in question.

2.5.5.1 Native XML Database Architectures

The architectures of native XML databases fall into two broad categories: text-based and model-based.

2.5.5.1.1 Text-Based Native XML Databases

A text-based native XML database is one that stores XML as text. This might be a file in a file system, a BLOB in a relational database, or a proprietary text format. (It is worth noting that a relational database that has added XML-aware processing of CLOB (Character Large OBject) columns is, in fact, a native XML database with respect to these abilities.)

Common to all text-based native XML databases are indexes, which allow the query engine to easily jump to any point in any XML document. This gives such databases a tremendous speed advantage when retrieving entire documents or document fragments. This is because the database can perform a single index lookup, position the disk head once, and, assuming that the necessary fragment is stored in contiguous bytes on the disk, retrieve the entire document or fragment in a single read. In contrast, reassembling a document from pieces, as is done in a relational database and some model-based native XML databases, requires multiple index lookups and multiple disk reads.

In this sense, a text-based native XML database is similar to a hierarchical database, in that both can outperform a relational database when retrieving and returning data according to a predefined hierarchy. Also like a hierarchical database, text-based native XML databases are likely to encounter performance problems when retrieving and returning data in any other form, such as inverting the hierarchy or portions of it. Whether this will prove to be true is as yet unknown, but the predominance of relational databases, whose use of logical pointers allows all queries of the same complexity to be performed with the same speed, seems to indicate it will be the case.

2.5.5.1.2 Model-Based Native XML Databases

The second category of native XML databases is model-based native XML databases. Rather than storing the XML document as text, they build an internal object model from the document and store this model. How the model is stored depends on the database. Some databases store the model in a relational or object-oriented database. For example, storing the DOM in a relational database might result in tables such as Elements, Attributes, PCDATA, Entities, and Entity References. Other databases use a proprietary storage format optimized for their model. Model-based native XML databases built on other databases are likely to have performance similar to those databases when retrieving documents for the obvious reason that they rely on those systems to retrieve data. However, the design of the database, especially for native XML databases built on top of relational databases, has significant room for variation. For example, a database that used a straight object-relational mapping of the DOM could result in a system that required executing separate SELECT statements to retrieve the children of each node.

On the other hand, most such databases optimise their storage models and retrieval software. For example, Richard Edwards has described a system for storing the DOM in a relational database that can retrieve any document fragment (including the entire document) with a single SELECT statement.

Model-based native XML databases that use a proprietary storage format are likely to have performance similar to text-based native XML databases when retrieving data in the order in which it is stored. This is because such databases use physical pointers between nodes, which should provide performance similar to retrieving text. Like text-based native XML databases, model-based native XML databases are likely to encounter performance problems when retrieving and returning data in any form other than that in which it is stored, such as when inverting the hierarchy or portions of it. Whether they will be faster or slower than text-based systems is not clear.

3 XML Database Products

3.1 Native XML Databases

Native XML databases fall into two broad categories as already mentioned:

· Text-based storage: Store the entire document in text form and provide some sort of database functionality in accessing the document. A simple strategy for this might store the document as a BLOB in a relational database or as a file in a file system and provide XML-aware indexes over the document. A more sophisticated strategy might store the document in a custom, optimised data store with indexes, transaction support, and so on.

· Model-based storage: Store a binary model of the document (such as the DOM or a variant thereof) in an existing or custom data store. For example, this might map the DOM to relational tables such as Elements, Attributes, Entities or store the DOM in pre-parsed form in a data store written specifically for this task. This includes the category formerly known as "Persistent DOM Implementations".

There are two major differences between the two strategies. First, text-based storage can exactly round-trip the document, down to such trivialities as whether single or double quotes surround attribute values. Model-based storage can only round-trip documents at the level of the underlying document model. This should be adequate for most applications but applications with special needs in this area should check to see exactly what the model supports.

The second major difference is speed. Text-based storage obviously has the advantage in returning entire documents or fragments in text form. Model-based storage probably has the advantage in combining fragments from different documents, although this does depend on factors such as document size, parsing speed (for text-based storage), and retrieval speed (for model-based storage). Whether it is faster to return an entire document as a DOM tree or SAX events probably depends on the individual database, again with parsing speed competing against retrieval speed.

Native XML databases differ from XML-Enabled databases in three main ways:

· Native XML databases can preserve physical structure (entity usage, CDATA sections, etc.) as well as comments, PIs, DTDs, etc. While XML-enabled databases can do this in theory, this is generally not done in practice.

· Native XML databases can store XML documents without knowing their schema (DTD), assuming one even exists. Although XML-enabled databases could generate schemas on the fly, this is impractical in practice, especially when dealing with schema-less documents.

· The only interface to the data in native XML databases is XML and related technologies, such as XPath, the DOM, or an XML-based API, such as the XML:DB API. XML-enabled databases, on the other hand, are likely to offer direct access to the data, such as through ODBC.

Native XML Databases differ from XML Servers and XML Application Servers for the same reasons that XML-Enabled Databases differ from those systems. Native XML databases differ from Content Management Systems in that Content Management Systems are generally front-ends to native XML databases, tailored specifically for managing document-centric documents and offering features such as editors, check-in/check-out, and so on.

3.1.1 4Suite, 4Suite Server

License: Open source
Database Type: Object-oriented

URL: http://www.4suite.org/4SuiteIndex.html
4Suite is a collection of Python tools for XML processing and object database management. It provides support for XML parsing, several transient and persistent DOM implementations, XPath expressions, XPointer, XSLT transforms, XLink, RDF and ODMG object databases.

4Suite Server builds on 4Suite to provide a complete platform for XML processing. It features an XML data repository, a rules-based engine, and XSLT transforms, XPath and RDF-based indexing and query, XLink resolution and many other XML services. It also supports related services such as distributed transactions and access control lists. Along with basic console and command-line management, it supports remote, cross-platform and cross-language access through CORBA, WebDAV, HTTP and other request protocols to be added shortly.

3.1.2 Birdstep DataBase Engine

License: Commercial

Database Type: Proprietary

URL: http://www.birdstep.com
Ultra-small footprint database for mobile and embedded devices. Supports relational, object-oriented and XML data models. Store XML documents in native format. Support for SAX Level 1, DOM Level 2 (core) and Xpath. Optional module for XML-based synchronization against back-end ODBC databases using SyncML (RelML).

3.1.3 DBDOM

License: Open Source

Database Type: Relational

URL: http://sourceforge.net/projects/dbdom/
DBDOM is an Open Source implementation of the DOM over a relational database, using a fixed set of tables to store the DOM tree in the database. DOM methods are implemented as stored procedures, but also included are a set of adapters so these can be called from Java. The initial version will run on PostgreSQL, with later versions planned for Oracle, DB2, and Microsoft SQL Server.

3.1.4 DbXML

License: Apache style Open Source

Database Type: Proprietary (Model-based)

URL: http://www.dbxml.com/
dbXML is an Open Source native XML database management system which is sponsored by the dbXML Group. It is designed for managing collections of XML documents, which are arranged hierarchically within the system in a manner similar to that of a file system. Querying the XML documents within the system is done using XPath and the documents can be indexed to improve query performance.

dbXML is written in Java but supports access from other languages by exposing a CORBA API thus allowing interaction with any language that supports a CORBA binding. It also ships with a Java implementation of the XML:DB XML Database API which is designed to be a vendor neutral API for XML databases. A number of command line tools for managing documents and collections are also provided. dbXML is available in two flavours, the Core and the Enterprise Edition.

The dbXML Core is a data management system designed specifically for collections of XML documents. It is easily embedded into existing applications, highly configurable, and openly extensible. It is released under the terms of an Apache style Open Source license.

Here are some of the Core's features:

· XML Compression allows documents to be stored in a tokenised form, allowing fast performance and improved memory conservation.

· XPath querying provides high-performance collection-level querying based on XPath document indexing.

· Documents are cached in memory to improve performance. Caching can be controlled both at the collection and the document levels.

· dbXML will automatically aggregate cross-collection content and logic using auto linking, allowing documents to become dynamic entities.

· An internal HTTP server is provided for direct access to dbXML applications and databases.

· Cocoon is integrated directly into dbXML for quick XSLT turnaround and to more efficiently utilize dbXML's XML compression system.

· XML Objects are Java classes that encapsulate server logic. XMLObject methods can be executed directly over HTTP or SOAP.

· CORBA API access provides cross-platform and multi-language database access.

· Command line tools provide basic server and data management capabilities for command line and scripted environments.

The commercial version of dbXML, the dbXML Enterprise Edition, is build upon the open source core by providing a suite of functionality geared specifically toward enterprise scalability, management, integration, and XML application development.
3.1.5 Exist

License: Open Source

Database Type: Relational

URL: http://exist.sourceforge.net
Native XML Database with pluggable storage backends and support for full text searching. XML is either stored in the internal, native XML-DB or an external RDBMS. The search engine has been designed to provide fast XPath queries, using indexes for all element, text and attribute nodes. eXist is lightweight and well suited for large document collections. The server is accessible from a wide range of programming languages and applications through easy to use HTTP and XML-RPC interfaces.

Includes a Java implementation of the native XML storage backend, provides access by XML-RPC calls or HTTP, supports document collections and integrates with Cocoon2.

3.1.6 EXtc

License: 30-day evaluation copy

Database Type: Cache

URL: http://www.mgateway.tzo.com/
eXtc is a native XML database built on top of the Cache database. It provides an implementation of the DOM over Cache, storing documents as DOM objects. Because eXtc is written in ObjectScript (Cache's extension of the M (MUMPS) programming language), the DOM implementation inherits the features of that language, such as integral support for transactions, multi-user access, and remote access. Additional eXtc features are a SOAP server and client, as well as HTTP access through Cache's WebLink module. It does not currently support any query languages. Although eXtc is currently written in ObjectScript, ports to non-Cache M platforms may be considered in the future.

3.1.7 Extensible Information Server (XIS)

License: 30-day evaluation copy

Database Type: Object-oriented

URL: http://www.exceloncorp.com/platform/extinfserver.shtml,

XIS stores XML documents in eXcelon's ObjectStore object-oriented database. Documents are stored in a proprietary, B-tree-like structure (for performance reasons) and can be indexed using both value and structural indexes. (Value indexes index element and attribute values; structural indexes index element and attribute names.) Documents can be arranged in collections; these can be nested, resulting in a file system metaphor.

XIS supports queries through XPath with extension functions and a proprietary update language. Statements in the update language consist of an XPath to a node, an operation on that node (insert before/after, update, delete), and any data needed to carry out the operation. XIS also supports server-side functions, which can be used in XPath statements, as triggers associated with update statements, or as stored procedures. These are written in Java and can directly manipulate data in the database through a server-side DOM implementation.

Related to queries is a proprietary linking language. This allows users to link existing documents as well as to build virtual documents that consist of nothing but links. Links are traversed transparently during queries and update operations, which means that virtual documents can be used to perform queries and updates over multiple documents in a single operation. Note that the application must currently enforce the referential integrity of links. That is, it must ensure that the document/fragment to which a link points actually exists.

XIS can integrate backend data through the XConnects module, which uses the Data Junction Universal Translation Suite. This provides links to many different data formats, including relational databases. Because the links are two-way, it means that backend data sources can be updated through XIS.

XIS supports transactions and can participate in XA transactions. However, it cannot currently manage XA transactions, so the application must coordinate any XA transactions that include XIS and other data sources, such as backend data stores. Other database features include distributed caching, partitioning, online backup and restore, and clustering support.

Finally, XIS comes with a Java API, a built-in XSLT processor, and a set of GUI development tools. These include an XML editor, an XSLT editor, a schema editor (XML Schemas and DTDs), an XSLT/Java debugger, and tools for mapping backend data to XML documents.

3.1.8 GoXML DB

License: Commercial

Database Type: Proprietary (Text-based)

URL: http://www.xmlglobal.com/prod/foundation/goxmldb.jsp
GoXML(tm) DB is a native XML database with a high performance query engine. XML documents are stored directly, eliminating the need to decompose data or to configure how data will be stored, such as relational databases can require.

3.1.9 Infonyte XQL Suite (formerly PDOM)

License: free for non-commercial

Database Type: Proprietary (Model-based)

URL: http://xml.darmstadt.gmd.de/xql/index.html
The Infonyte XQL Suite provides an implementation of the DOM over indexed, binary files (the PDOM, or Persisten DOM). These are created by converting existing XML documents (a one-time operation), as well as when PDOM is used to create a new DOM Document. PDOM includes a cache, which swaps DOM nodes to disk when handling large DOM trees, defragmentation and garbage collection facilities, commit points (for writing the in-memory tree to disk), file compression with gzip, and thread-safe operation. The XQL Suite also includes an implementation of XQL, which users can extend with custom operators and methods, and servlet versions of the DOM and XQL implementations.

3.1.10 Ipedo XML Database

License: Commercial

Database Type: Structured

URL: http://www.ipedo.com/
The Ipedo XML Database is a new kind of database server that stores XML data natively in its structured, hierarchical form. This preserves the hierarchy of the XML data and increases performance. Queries can be resolved much faster because there is no need to map the XML data tree structure to tables. Working alongside a relational database or application server, a native XML database adds flexibility and speed to online applications.

3.1.11 Lore

License: Freeware (depending on use)

Database Type: Semi-structured

URL: http://www-db.stanford.edu/lore/home/index.html
Semi-structured data is data with more structure than a conversation, but less structure than a telephone book. A good example is a resume (curriculum vitae). While virtually all resumes include a name, address, and telephone number, only some will include an email address, Web site, or FAX number. Most will include a list of previous jobs, but others might include only a list of university courses. Depending on the profession, there might be a list of software used or licenses held.

XML is well suited to storing semi-structured data and shares a feature common to many semi-structured data models: it is self-describing. That is, it carries a certain amount of metadata with the data. In the case of XML, this is in the form of element type and attribute names. The legality of well-formed documents mirrors another feature found in many semi-structured data models: the data model is not required to have a definitive schema, and the model can be extended at will by the addition of new fields.

Lore is a database designed for storing semi-structured data. Although it predates XML, it has recently been migrated for use as an XML database. It includes a query language (Lorel), multiple indexing techniques, a cost-based query optimizer, multi-user support, logging, and recovery, as well as the ability to import external data. Because Lore is designed for use with semi-structured data, XML documents without DTDs can be easily stored.

An interesting feature of Lore is a DataGuide, which is a "structural summary of all paths in the database". Unlike structured databases, in which the structure is specified first and data is added according to that structure, data is entered first into Lore and the structure is then summarized. The resulting information is useful for query processing.
3.1.12 Neocore XML Management System

License: Time limited evaluation copy

Database Type: Proprietary

URL: http://www.neocore.com/products/products.htm
A fully transactional native XML database system that serves as a bi-directional web server, accepting and returning XML documents and fragments via HTTP(S). It supports all basic database functions, including storage, delete, copy, and query for XML documents, and insert, modify, and query for XML data elements. NeoCore XMS is schema-independent, and does not require database or schema design before using the system. Specific features of NeoCore XMS include XPath-based query support, access control, user-defined document data management, GUI-based administration, and session control.

3.1.13 Nimble Integration Suite

License: Commercial

Database Type: Heterogenous

URL: http://www.nimble.com/solutions/products/suiteoverview/
The Nimble Integration Suite is a comprehensive XML-based platform that integrates data from disparate systems inside and outside the firewall. The platform's XML (Extensible Markup Language) foundation and innovative distributed query processing technology provides direct access to multiple data sources. With the Nimble data integration platform, IT and business users can create intuitive, real-time queries (business questions) that join heterogeneous data. This includes relational data and non-relational data such as semi-structured data.

3.1.14 Ozone

License: Freeware Open Source

Database Type:

URL: http://ozone-db.org/ozone_main.html
Ozone is an Open Source object-oriented database completely implemented in Java. It supports transactions, object-level access rights, RMI, multi-user access, and multi-threading and comes with an implementation of the DOM.

3.1.15 SIM (Structured Information Manager)

License: Freeware

Database Type: Proprietary

URL: http://www.simdb.com/simdb%20content%2FAbout%20SIM
SIM is designed to support applications where the content is more valuable than the system that surrounds it. Standards are therefore central to the SIM philosophy. Due to the modular architecture, the various SIM components can be used separately for particular applications. More commonly however, the full range of products are used together to build complex applications.

3.1.16 Tamino

License: Commercial

Database Type: Proprietary. Relational through ODBC.

URL: http://www.softwareag.com/tamino/
Tamino is a native XML database management system developed by Software AG. Tamino is a relatively mature application that provides the means to store & retrieve XML documents, store & retrieve relational data, as well as interface with external applications and data sources. Tamino has a web based administration interface similar to that used by the major relational database management systems and includes GUI tools for interacting with the database and editing schemas.

Schemas in Tamino are DTD-based and are used primarily as a way to describe how the XML data should be indexed. When storing XML documents in Tamino; one can specify a pre-existing DTD which is then converted to a Tamino schema, store a well-formed XML document without a schema which means that default indexing ensues or a schema can be created from scratch for the XML document being stored. A secondary usage of schemas is for specifying the data types in XML documents. The main advantage of using data types in Tamino is to enable type-based operations within queries (e.g. numeric comparisons). The query language used by Tamino is based on XPath and is called X-Query (not to be confused with the W3C XQuery).

Tamino also ships with a relational database management system, which is called the SQL Engine. Schemas can be used to creating mappings from SQL to XML, which then allow for the storage or retrieval of XML data from relational database sources either internal (i.e. the SQL Engine) or external. Schemas can also be used to represent joins across different document types. Joins allow for queries to be performed on XML documents with differing schemas. Future versions of Tamino are supposed to eliminate the need to specify joins up front in a schema and instead should allow for such joins to be done dynamically from a query.

Tamino provides APIs for accessing the XML store in both Java and Microsoft's JScript. C programmers can interact with the SQL engine using the SQL precompiler that ship with Tamino. Interfaces that allow ODBC, OLE DB and JDBC clients to communicate with the Tamino SQL Engine are also available. Finally, Tamino ships with the X-Tensions framework, which allows developers to extend the functionality of Tamino by using C++ COM objects or Java objects.

3.1.17 TEXTML Server

License: 30-day evaluation copy

Database Type: Proprietary (Text-based)

URL: http://www.ixiasoft.com/Products/TEXTMLServer/frame-text.asp
The TEXTML Server is an XML document server whose purpose is to store, index and retrieve large quantities of XML documents. Geared for anyone looking to implement a web-based XML document management component within a larger solution the TEXTML Server features a documented COM API with an Active Server Page toolkit.

3.1.18 Virtuoso

License: Commercial

Database Type: Proprietary. Relational through ODBC

URL: http://www.openlinksw.com/virtuoso/
Virtuoso is a heterogeneous join engine featuring security, transactions (including two-phase commit), and replication. Its query engine supports heterogeneous views, stored procedures, scrollable cursors, and full text search. It accesses external data sources through ODBC, as well as having its own relational data store.Virtuoso supports XML in a number of ways.

First, it contains a native XML data store, which is non-relational and can store and index XML documents in parsed or unparsed form.

Second, it can transfer data from relational databases to XML documents (although not the other direction), using the same mapping found in the FOR XML clause in Microsoft SQL Server. Third, it includes an implementation of XPath. Although this only works on "native" XML data, relational data can be included by first transferring it to XML. Finally, it includes support for XSLT, executing stored procedures through SOAP, and WebDAV.

3.1.19 Xfinity Server

License: 30-day evaluation copy

Database Type: Relational.

URL: http://www.b-bop.com/products.htm
Xfinity Server provides native XML document storage over any relational database. It stores XML documents as discrete elements and does not require documents to have a DTD or schema. A query engine is used to index documents and retrieve entire documents or document fragments; returned documents can be transformed with a built-in XSLT engine. Xfinity server can also retrieve data from external relational databases, HTML documents, flat files, and Word and Excel documents. The query language used, as well as the APIs used for the native store and external databases, is not specified.

3.1.20 X-Hive/DB

License: Commercial

Database Type: Object-oriented (Objectivity/DB)

URL: http://www.x-hive.com/
X-Hive/DB enables developers of XML applications to store, search and retrieve XML documents in a fast and scalable manner. It supports open standards to ensure ease of programming and effortless integration. Its ability to instantly locate and retrieve the smallest element within very large (collections of) documents sets it apart from alternative XML storage solutions and makes it the ideal database for publishers and developers of content management systems. X-Hive Corporation is an active member of the W3C.

Implements XLink, XPointer, and the DOM L3 Content Model. Includes full text searching and indexing and bridges to market leading XML editors.

3.2 XML Servers
XML Servers are platforms for serving data to and receiving data from distributed applications, such as e-commerce and business-to-business applications. Data is transferred in the form of data-centric XML documents, although some systems can also serve document-centric documents. XML Servers generally contain complete application development environments and provide access to data in a variety of data stores, including legacy databases, email messages, and file systems.

The line between XML Servers and XML-Enabled Databases and Native XML Databases is blurry, as the latter usually can also access a variety of data stores and connect to the Web. Those systems that have been classified as XML Servers are ones that portray themselves as platforms for building e-commerce and other distributed applications, rather than strictly as databases, which obviously can be used to develop such applications. The line between XML Servers and XML Application Servers is also blurry; those systems have been categorized, as XML Application Servers tend to be driven by scripting languages or custom markup languages and generally sit on top of a Web server.

3.2.1 Castor

License: Open Source

Database Type: Relational (JDBC)

URL: http://castor.exolab.org/index.html
Castor is Open Source project that is "the shortest path between Java[tm] objects, XML documents, SQL tables and LDAP directories. It provides Java to XML binding, Java to SQL/LDAP persistence, and then some." It supports optimistic and pessimistic locking modes, in-memory concurrency engine, and dead-lock detection, as well as support for Enterprise Java Beans, JTA transaction demarcation, inclusion as resource in transactional environment, and JDBC connection pooling.

Castor supports XML through its ability to transfer data between XML documents and Java objects and between Java objects and relational databases. Mappings are specified with an XML-based mapping language that defines an object-relational mapping and supports one-one and one-many relation types, SQL/Java inheritance, object graph to single row mapping, multiple column primary keys, and automatic type conversion. In addition, a code generator can generate classes from XML Schema documents. Work is under way on a component to transfer data directly between XML and relational databases without intermediate Java objects.

3.2.2 MatriXML

License: Commercial

Database Type: Oracle. External relational through ODBC

URL: http://www.mojocommerce.com/
MatriXML is a Web server add-on used to store and retrieve XML documents via the Web. Documents are stored in an Oracle database using a proprietary set of tables that model the logical structure of XML documents. Before documents can be stored, users must first define their DTD to the database; this is done through browser-based tools. With the same set of tools, users can also define the XSL or CSS style sheet (if any) to be used when displaying the document.

XML documents are retrieved from the database via URL. They are sent to the database either via a browser screen or as complete XML documents. Users can also update and delete XML documents via browser screen.

In addition to containing static data, XML documents can contain data from one or more ODBC databases; the mapping from ODBC to XML is not specified.

Of interest, all structure, content, and formatting is versioned and archived. Furthermore, MatriXML has been designed to meet the requirements of the US Food and Drug Administration (FDA) for electronic signatures and electronic record handling.

3.2.3 Rhythmyx Integrator

License: Commercial

Database Type: Relational (JDBC, ODBC)

URL: http://www.percussion.com/rhythmyx/index.htm
Rhythmyx Integrator is a Web server that runs database-driven applications. Developers define these applications with Rhythmyx Workbench, a GUI tool that defines how data is processed. As input, developers pass HTML pages that have been labelled with which fields contain dynamic data -- that is, data from the database. A utility (XSpLit) then generates an XML document and an XSL document from the marked-up HTML and the developer maps the database fields to the XML document. Finally, the developer indicates any additional processing, such as whether the data may be inserted, updated, or deleted in the database, whether any Java code is to be executed immediately before or after calls to the database, and so on. It is not clear in what form data is accepted from the Web (XML documents, HTML form values, etc.)

It appears that the XML document is mapped to the database with an object-relational mapping, with the ability to insert grouping elements. (For example, suppose an Employee table is mapped to the Employee element. The FirstName and LastName columns could be mapped to FirstName and LastName elements, grouped inside a Name element that is a child of Employee.) Of interest, Rhythmyx Integrator can perform heterogeneous joins -- that is, it can join data from different databases -- and update data in multiple, heterogeneous tables.

3.2.4 Total-e-Business (formerly Bluestone XML-Server)

License: Commercial

Database Type: Relational (JDBC)

URL: http://www.bluestone.com/products/total-e-server/default.htm
Total-e-Business is a J2EE (Java 2 Enterprise Edition) application server, at the heart of which is an Enterprise Java Beans (EJB) object server (the Universal Business Server). Applications are built from EJBs and run in the context of the object server, which provides resources for handling transactions, persistence, etc. A typical Web-based application is constructed of Java Server Pages (JSPs), which use EJBs to perform various tasks.

XML is used in Total-e-Business applications in several places. First, it can be used as the interface between EJBs and JSPs. That is, a JSP can populate an EJB using data in an XML document. Similarly, an EJB can pass data to a JSP as an XML document. In the latter case, the XML can be transformed by XSLT (such as to an HTML or WML document) or sent directly to a browser on the Web. (It is not clear whether the JSP can receive data from the Web in the form of an XML document. If so, it could be passed directly to the EJB.)

The second way in which XML is used is to persist EJBs. In this case, the EJB's data is persisted to an XML document, which is then passed to the Bluestone XML-Server to be stored in a database. The XML document is mapped to the database with an object-relational mapping, which allows it to contain deeply nested elements that are stored in multiple tables. (EJBs can also be persisted directly to the database using JDBC, but this requires hand-coding.)

The third way in which XML is used is in "XML applications". These consist of an application class and one or more document handlers. The application class receives incoming XML documents and passes them to document handlers for processing. It also sends XML documents back to clients, such as Web browsers or other XML applications. XML applications use the Bluestone XML-Server to transfer data between XML documents and relational databases.

3.2.5 XA-BizDoc Server

License: Commercial

Database Type: Relational (ODBC), others through user-written drivers

URL: http://www.xaware.com/products
The XA-BizDoc Server is a Web application server (or standalone Web server) that serves XML documents to, and receives XML documents from, the Web. Each XML document is mapped to one or more data sources by a business document, or BizDoc. This maps the XML document to the database with an object-relational mapping, with the ability to insert grouping elements. (For example, suppose an Employee table is mapped to the Employee element. The FirstName and LastName columns could be mapped to FirstName and LastName elements, grouped inside a Name element that is a child of Employee.)

What is interesting about BizDocs is that the mappings are modular. That is, a given BizDoc is composed of a tree of business components, or BizComps. Each BizComp contains the information needed to map a set of elements to a given data source. Not only can each BizComp in a given BizDoc use a different data source, BizComps can be reused in different BizDocs.

For example, suppose an XML document represents a purchase order. At the top level is purchase order header information, such as purchase order number and date. Nested inside this could be customer information as well as multiple purchase order items. Three different BizComps could process this: one for the purchase order header information, one for the customer information, and one for the items. The BizComps for header information and items might store this data in the PurchaseOrders and PurchaseItems tables in one database, while the BizComp for customer information might store the customer data in a Customers table in a separate database. Thus, if you needed to define a BizDoc for an XML document that contained only customer information, you could reuse the customer BizComp.

3.2.6 XML Portal Server (XPS)

License: Commercial

Database Type: Various

URL: http://www.citrix.com/products/
XML Portal Server (XPS) provides XML-driven business processes and XML-based content delivery. Although the lines can blur between the two, they are most easily viewed separately.

Business processes are implemented as a user-defined series of actions on a business object (XML document). The XML document may come from an external source (such as an external application or the Web) or be constructed from data in a database. A dispatcher controls the flow of the document from action to action based on user-defined rules, which use XPath expressions to identify data in the document. Actions, such as ordering new parts based on current inventory, storing the data in the document in a database, or simply indexing the document, are carried out by "integration agents"; users can use pre-defined agents or write their own. All business processes occur within a Microsoft Transaction Server (MTS) transaction.

Content delivery is provided through Content Delivery Agents (CDAs). CDAs are typically written in JavaScript or VBScript and control how an XML document is assembled. For example, the script might retrieve data from a database, integrate content from an Internet content provider such as CNBC, or associate a certain style sheet based on the value of retrieved data. The XML document can then be formatted with a stylesheet before being sent to the client. XPS comes with a number of pre-defined CDAs.

3.3 XML Application Servers

XML Application Servers are Web application servers that are able to serve both data-centric and document-centric XML documents to the Web. They are generally template-driven, using embedded SQL statements in a scripting language to retrieve data and dynamically build XML documents. (Web application servers are really just high-volume applications that use the Web for their user interface. They plug into a Web server, which handles communication with the Web, delegates tasks, and serves static documents that no application servers handle.)

Although many Content Management Systems can also publish XML to the Web, they are fundamentally different in that they are designed to manage document-centric documents, while XML Application Servers serve both data-centric documents (in the form of dynamic Web pages) and document-centric documents (in the form of static Web pages).

3.3.1 AxKit

License: Distributed under the GNU GPL

Database Type: Relational (DBI)

URL: http://217.158.50.178/
AxKit is an XML application server for Apache. It works by checking requests to Apache to see if they are for XML documents. If so, AxKit takes over the processing; if not, it lets Apache continue with its processing. AxKit processing is done by one or more PERL modules. These can do anything from simply applying an XSL stylesheet to retrieving data from a database. The modules can be chained together in UNIX pipe-like fashion using one of three models. First, the XML document can be passed from one module to the next as a DOM tree. Second, it can be passed as a text string representing the document. Third, the modules can be set up like SAX filters, with each module acting as a SAX application for the previous module and a SAX parser for the subsequent module.

3.3.2 Cache

License: Commercial

Database Type: Cache (Post-Relational)

URL: http://cache.intersys.com/cache/edbms.html
Cache is a "post-relational" database that stores data in multi-dimensional arrays and provides SQL, object-oriented, and multi-dimensional access to that data. It can serve as a Web application server, where applications are composed of Cache Server Pages -- XML or HTML pages marked up with Cache Application Tags. Cache claims speed gains over other Web application servers on two grounds. First, the Cache database is faster than relational databases. Second, the Cache Server Pages are processed in the same process that the database runs in, eliminating the overhead of inter-process communication.

3.3.3 Cocoon

License: Freeware

Database Type: Relational (JDBC)

URL: http://xml.apache.org/cocoon/sqltaglib.html
Cocoon is an XML publishing framework for the Apache web server. Web pages are written in XSP (eXtensible Server Pages), a scripting language. This language contains an SQL tag library for retrieving data from relational databases with JDBC. Most of the tags contain configuration information, such as the database URL, or processing information, such as the number of rows to return from a SELECT statement. A query tag contains the SQL statement to execute; note that this can be any SQL statement, not just a SELECT statement.

If the statement is a SELECT statement, the results are returned as XML, where the XML is modeled as a single table. Users can specify the names of the elements that wrap each row, as well as the name of an element to wrap the entire result set. The names of elements for each column are taken from the result set; these can be specified with AS clauses in the SELECT statement. In addition, users can specify Java Format classes to format the output of a column.

3.3.4 ColdFusion

License: Commercial

Database Type: Relational (ODBC, OLE DB, Native drivers)

URL: http://www.allaire.com/Products/ColdFusion/productinformation/
ColdFusion is a Web application server that can retrieve and update data on numerous sources, including databases (ODBC, OLE DB, and native drivers), email, and file systems. It includes an integrated development environment and supports object transaction middleware through COM, CORBA, and EJB. ColdFusion is template-driven, with applications written in Cold Fusion Markup Language (CFML). This includes tags for inserting and updating data from forms, executing stored procedures, executing user-specified SQL statements (such as SELECT, INSERT, UPDATE, or DELETE), and starting, committing, and rolling back transactions. Users use special parameters to specify where data from result sets is placed in the document. It appears these can be used as parameters for other SQL statements, allowing nested queries to be constructed.

3.3.5 DataChannel Server (formerly Rio)

License: Commercial

Database Type: Relational through JDBC and ODBC

URL: http://www.datachannel.com/products/index.html
DataChannel Server is a tool for building and running Enterprise Information Portals (EIPs). (An EIP is a Web site that allows a corporation to expose information from a variety of sources -- documents, databases, email, and so on -- to its employees and allow those employees to modify that information, such as by editing documents. Think of Lotus Notes on the Web.) DataChannel has three layers: data, application, and access. The data layer accesses data stored both internally and externally and exposes this to the application layer as an XML document. The data layer can convert over 200 "document types" (from Word to relational data) into XML documents. Each EIP has its own application layer, which must be built from Java servlets and XSL stylesheets. These access XML documents in the data layer using DOM. The access layer is any software that can read XML, such as a browser on a desktop or in a WAP-enabled cell phone. Changes made by users are sent back to the application layer using WebDAV (Web-based Distributed Authoring and Versioning -- an extension to HTTP).

3.3.6 Enhydra

License: Open Source

Database Type: Relational (JDBC)

URL: http://www.enhydra.org
Enhydra is an Open Source Web application server. Applications are constructed of Java objects. There are three layers of objects: presentation objects (which generate content), application objects (which contain business logic and drive the application), and data objects (which transfer contain data and provide database access).

Enhydra differs from most Web application servers in that there is a separate Java class for each XML or HTML document. This separates presentation from application logic and is faster because documents are parsed at development time, not run time. To create a presentation object, which is eventually served to the Web as an XML or HTML document, a developer marks up an XML or HTML document, adding an id attribute to each dynamic element. A program (XMLC) reads this and generates the code for the corresponding presentation class. This contains an initialization method that creates a DOM tree for the document, and accessor methods for each dynamic element. These return the element's Element node, which application objects can use to manipulate the element. For example, they can set the element's text to data from the database.

 Lasso

License: Commercial

Database Type: Relational (ODBC, native drivers)

URL: http://www.blueworld.com/blueworld/products/

The Lasso Web Data Engine is Web Application Server software for building and deploying database-driven Web applications for enhanced Web browser access to information via intranets and the Internet. In conformance with emerging standards, Lasso 3.5 introduces support for the Extensible Markup Language (XML) by allowing Lasso tags to be coded using XML syntax.

3.3.7 Noetix Web Query

License:

Database Type: Relational (ODBC)

URL: http://www.noetix.com/prod_ente_webq_NoetixWebQuery.asp
Noetix Web Query is a Web application server that retrieves data from "multiple, disparate databases" and returns results as XML documents. It is not clear if it can perform heterogeneous joins (probably not?), nor is it clear how results are formatted as XML. Noetix Web Query requires Microsoft IIS on the server and Internet Explorer 5.0 on the client.

3.3.8 Rhythmyx Content Manager

License: Commercial

Database Type: Unknown

URL: http://www.percussion.com/rhythmyx/content.htm
Rhythmyx Content Manager is a Web server based on the same server as Rhythmyx Integrator. It can act either as a standalone Web server or a plug-in to an existing Web server and uses a user-supplied database as a document repository. No details are given on what databases are supported as repositories.

Web pages are designed using the Rhythmyx Workbench, which is described in the entry for Rhythmyx Integrator. Pages can be static, extracted from files such as PDF, Word, Excel, or comma-separated text files, created on the fly with data from JDBC or ODBC databases (including heterogeneous joins), or generated by Java code, which could, for example, pull the data from a live data feed. The result of assembling a page is an XML document, which can then be served directly to the Web or transformed with XSLT. Rhythmyx Workbench can also be used to define the workflow required to create document, such as checking documents in and out or approving them for publication.

3.3.9 SQml Web and SQml Publisher

License: Commercial

Database Type: Relational (ODBC)

URL: http://www.agave.com/html/products/index.htm

A CGI application for serving database-driven HTML and XML documents. Data is retrieved through SQml Publisher, which is template-driven. It allows users to embed SQL statements in dynamic Web pages. The user then uses parameters to specify where the results of these queries will be placed. Note that they can be used as parameters in other SQL statements, allowing nested queries to be constructed. SQml Publisher can also be used as a stand-alone product for non-Web applications

3.3.10 Zope

License: Open Source

Database Type: Object-oriented

URL: http://www.zope.org/,

Zope is an Open Source Web application server. Unlike most Web application servers, Zope is really an object-oriented programming system, based on the Zope Object Database (ZODB). Developers can create and manipulate objects both through Python and through Document Template Markup Language (DTML). Each DTML document is therefore a separate object and DTML itself is closer to a programming language than it is to a simple tag set. It provides control-of-flow tags (if-the-else, loops, etc.) and allows users to create their own methods.

Developers use SQL to access relational databases. If the SQL statement is a SELECT statement, each row of the result set is returned as a Zope object. This may be accessed through Python or DTML. In the latter case, individual columns are accessed through parameters, and these may be placed whereever the user wants in the output document. These may be used to parameterize additional SQL statements, allowing nested queries to be constructed.

Zope supports XML in a number of ways. First, a DTML document can simply contain XML tags instead of HTML tags; this can be used, for example, to construct an XML document from relational data or data stored in ZODB. Second, existing XML documents can be stored in ZODB as XMLDocument objects. These can be manipulated with the DOM, transformed with XSLT, or returned to directly to clients as XML or HTML. Third, existing XML documents can be mapped to a tree of Zope objects according to an XSLT stylesheet. Fourth, ZDOM apparently allows any tree of objects in ZODB to be viewed/manipulated with a subset of the DOM. Finally, Zope supports XML-RPC and early third-party modules are available to use Zope with SOAP.

 � �

REGNET IST-2000-26336
Page 3 of 28

[image: image2.png]nformation
society
technologies

