Project Management

Interim Report 1.4

[image: image1.jpg]REG et

Cultural Heritage in FREEGional /7 T works

REGNET-IST-2000-26336

Interim Report

	Project acronym
	REGNET
	Contract nr.
	IST-2000-26336

	Type and Number
	Interim Report no. 2.2

	Work package
	WP2: Implementation and Preparation of the Demonstration

	Task
	T2.2: Implementation of the System and Preparation of Content

	Date of delivery
	Contractual
	YYYY-MM-DD
	Actual
	2001-12-05

	Code name
	RN_IR22v01
	Version 01 draft (final (

	Objective
	Interim Report

	Distribution Type
	Restricted / Public

	Authors (Partner)
	SR, VALT

	Contact Person
	Christian Eichinger, Jean-Pierre LORRE

	Abstract
	This interim report describes results coming from task 2.2.

	Keywords List
	

	Version log
	2

Table of Contents

41
Executive summary [VALT]

42
Introduction

42.1
Iterations

42.2
Artifacts

42.2.1
Elaboration (iteration 1)

42.2.1.1
Objectives

52.2.1.2
Essential activities

52.2.1.3
Evaluation Criteria

52.2.1.4
Artefacts

62.2.2
Construction phase (iterations 2,3)

62.2.2.1
Objectives

62.2.2.2
Essential Activities

72.2.2.3
Evaluation Criteria

72.2.2.4
Artefacts

73
Core System Design [VALT]

73.1
Architecture overview

73.2
Interfaces

73.2.1
REGNET Portal [MOT]

73.2.1.1
Data Generation [SPAC]

73.2.1.2
Search and Retrieval [AIT]

73.2.1.3
E-Business [ZEUS]

73.2.2
Cultural heritage data management [SPAC]

73.2.2.1
Repository management [SPAC]

73.2.2.2
Reference system [AIT]

73.2.3
E-Business data management [ZEUS]

73.2.3.1
Catalogue management [ZEUS]

73.2.3.2
Procurement and Delivery [VALT]

83.2.4
Knowledge Base Access [SI]

83.2.5
Electronic publisher [SR]

83.3
Tools and Platform

84
Prototypes

84.1
Portal + J2EE/SOAP + PHP/SOAP [MOT, ZEUS, VALT]

84.1.1
Scope

84.1.2
Architecture

84.1.3
Conclusion

84.2
EbXML Message [VALT]

84.2.1
Scope

84.2.2
Architecture

84.2.3
Conclusion

84.3
TopicMap [TARX, SI]

84.3.1
Scope

84.3.2
Architecture

84.3.3
Conclusion

94.4
Search and Retrieval [AIT]

94.4.1
Scope

94.4.2
Architecture

94.4.3
Conclusion

94.5
CatXML [ZEUS]

94.5.1
Scope

94.5.2
Architecture

94.5.3
Conclusion

94.6
WAP [MOT]

94.6.1
Scope

94.6.2
Architecture

94.6.3
Conclusion

94.7
Publication [SR]

94.7.1
Scope

94.7.2
Architecture

94.7.3
Conclusion

95
Design Model [VALT]

105.1
Purpose

105.2
Brief Outline

105.2.1
Introduction

105.2.2
Design-Model Hierarchy

105.2.3
Diagrams of the Design Model

105.3
REGNET Portal [MOT]

105.3.1
Data Generation [SPAC]

105.3.1.1
Introduction

105.3.1.2
Design model hierarchy

105.3.1.3
Diagrams of the design model

115.3.2
Search and Retrieval [AIT]

115.3.2.1
Introduction

115.3.2.2
Design model hierarchy

115.3.2.3
Diagrams of the design model

115.3.3
E-Business [ZEUS]

115.3.3.1
Introduction

115.3.3.2
Design model hierarchy

115.3.3.3
Diagrams of the design model

115.4
Cultural heritage data management [SPAC]

115.4.1
Repository management [SPAC]

115.4.1.1
Introduction

115.4.1.2
Design model hierarchy

115.4.1.3
Diagrams of the design model

115.4.2
Reference system [AIT]

115.4.2.1
Introduction

115.4.2.2
Design model hierarchy

115.4.2.3
Diagrams of the design model

115.5
E-Business data management [ZEUS]

115.5.1
Catalogue management [ZEUS]

115.5.1.1
Introduction

115.5.1.2
Design model hierarchy

115.5.1.3
Diagrams of the design model

125.5.2
Procurement and Delivery [VALT]

125.5.2.1
Introduction

125.5.2.2
Design model hierarchy

125.5.2.3
Diagrams of the design model

125.6
Knowledge Base Access [SI]

125.6.1
Introduction

125.6.2
Design model hierarchy

125.6.3
Diagrams of the design model

125.7
Electronic publisher [SR]

125.7.1
Introduction

125.7.2
Design model hierarchy

125.7.3
Diagrams of the design model

126
Data Model

136.1.1
Data model hierarchy

136.1.2
Diagrams of the data model

137
Implementation Model [VALT]

137.1
Overview

137.2
Layers

138
Deployment Plan [AIT]

138.1
Deployment Planning

138.1.1
Responsibilities

138.1.2
Schedule

148.2
Resources

148.2.1
Facilities

148.2.2
Hardware

148.2.3
The Deployment Unit

148.2.3.1
Support Software

148.2.3.2
Support Documentation

148.2.3.3
Support Personnel

148.3
Training

Executive summary [VALT]

1 Introduction

This document contains artefacts from the task 2.2 “Implementation of the System and Preparation of Content”.

As far as process used for Regnet project is based on Unified Process, this document contains iterations and artifacts description.
1.1 Iterations

This task has been splitten into 3 iterations of 2 months. According to UP the fisrt one is relevant to the elaboration phase, the second and the third one are relevant to construction phase.

The inception phase has been finished and elaboration phase has begun in the previous work-package (WP1). So some artifacts are part of delivrables D2 “specification and state of the art”.

Fist iteration: Architecture validation [VALT]

To be completed

Second iteration: Portal [MOT]

To be completed
Third iteration: Fist version [ZEUS]

To be completed
1.2 Artifacts

Artifacts from this task are detailed below.

1.2.1 Elaboration (iteration 1)

1.2.1.1 Objectives

The goal of the elaboration phase is to baseline the architecture of the system to provide a stable basis for the bulk of the design and implementation effort in the construction phase. The architecture evolves out of a consideration of the most significant requirements (those that have a great impact on the architecture of the system) and an assessment of risk. The stability of the architecture is evaluated through one or more architectural prototypes.

The primary objectives of the elaboration phase include:

· To ensure that the architecture, requirements and plans are stable enough, and the risks sufficiently mitigated to be able to predictably determine the cost and schedule for the completion of the development. For most projects, passing this milestone also corresponds to the transition from a light-and-fast, low-risk operation to a high cost, high risk operation with substantial organizational inertia.

· To address all architecturally significant risks of the project

· To establish a baselined architecture derived from addressing the architecturally significant scenarios, which typically expose the top technical risks of the project.

· To produce an evolutionary prototype of production-quality components, as well as possibly one or more exploratory, throw-away prototypes to mitigate specific risks such as:

· design/requirements trade-offs

· component reuse

· product feasibility or demonstrations to investors, customers, and end-users.

· To demonstrate that the baselined architecture will support the requirements of the system at a reasonable cost and in a reasonable time.

· To establish a supporting environment.

In order to achieve this primary objectives, it is equally important to set up the supporting environment for the project. This includes creating a development case, create templates, guidelines, and setting up tools.

1.2.1.2 Essential activities

· Defining, validating and baselining the architecture as rapidly as practical.

· Refining the Vision, based on new information obtained during the phase, establishing a solid understanding of the most critical use cases that drive the architectural and planning decisions.

· Creating and baselining detailed iteration plans for the construction phase.

· Refining the development case and putting in place the development environment, including the process, tools and automation support required to support the construction team.

· Refining the architecture and selecting components. Potential components are evaluated and the make/buy/reuse decisions sufficiently understood to determine the construction phase cost and schedule with confidence. The selected architectural components are integrated and assessed against the primary scenarios. Lessons learned from these activities may well result in a redesign of the architecture, taking into consideration alternative designs or reconsideration of the requirements.

At the end of the elaboration phase is the second important project milestone, the Lifecycle Architecture Milestone. At this point, you examine the detailed system objectives and scope, the choice of architecture, and the resolution of the major risks.

1.2.1.3 Evaluation Criteria

· The product Vision and requirements are stable.

· The architecture is stable.

· Executable prototypes have demonstrated that the major risk elements have been addressed and have been credibly resolved.

· The iteration plans for the construction phase are of sufficient detail and fidelity to allow the work to proceed.

· The iteration plans for the construction phase are supported by credible estimates.

· All stakeholders agree that the current vision can be met if the current plan is executed to develop the complete system, in the context of the current architecture.

· Actual resource expenditure versus planned expenditure are acceptable.

The project may be aborted or considerably re-thought if it fails to reach this milestone.

1.2.1.4 Artefacts

· Prototypes: One or more executable architectural prototypes have been created to explore critical functionality and architecturally significant scenarios.
· Risk list: Updated and reviewed. New risks are likely to be architectural in nature, primarily relating to the handling of non-functional requirements.
· Project-specific templates: The document templates used to develop the document artefacts.
· Tools: The tools used to support the work in Elaboration are installed.
· Software architecture document: Created and baselined, including detailed descriptions for the architecturally significant use cases (use-case view), identification of key mechanisms and design elements (logical view), plus definition of the process view and the deployment view if the system is distributed or must deal with concurrency issues. This artefact has been done in WP1.
· Design Model: Defined and baselined. Use-case realizations for architecturally significant scenarios have been defined and required behaviour has been allocated to appropriate design elements. Components have been identified and the make/buy/reuse decisions sufficiently understood to determine the construction phase cost and schedule with confidence. The selected architectural components are integrated and assessed against the primary scenarios. Lessons learned from these activities may well result in a redesign of the architecture, taking into consideration alternative designs or reconsideration of the requirements.
· Data Model: Defined and baselined. Major data model elements (e.g. important entities, relationships, tables) defined and reviewed.
· Implementation model. Initial structure created and major components identified and prototyped.
· Software development plan: Updated and expanded to cover the Construction and Transition phases.
· Use case model: A use-case model (approximately 80% complete)—all use cases having been identified in the use-case model survey, all actors having been identified, and most use-case descriptions (requirements capture) have been developed.
1.2.2 Construction phase (iterations 2,3)

1.2.2.1 Objectives

The goal of the construction phase is on clarifying the remaining requirements and completing the development of the system based upon the baselined architecture. The construction phase is in some sense a manufacturing process, where emphasis is placed on managing resources and controlling operations to optimize costs, schedules, and quality. In this sense the management mindset undergoes a transition from the development of intellectual property during inception and elaboration, to the development of deployable products during construction and transition.

The primary objectives of the construction phase include:

· Minimizing development costs by optimizing resources and avoiding unnecessary scrap and rework.

· Achieving adequate quality as rapidly as practical

· Achieving useful versions (alpha, beta, and other test releases) as rapidly as practical

· Completing the analysis, design, development and testing of all required functionality.

· To iteratively and incrementally develop a complete product that is ready to transition to its user community. This implies describing the remaining use cases and other requirements, fleshing out the design, completing the implementation, and testing the software.

· To decide if the software, the sites, and the users are all ready for the application to be deployed.

· To achieve some degree of parallelism in the work of development teams. Even on smaller projects, there are typically components that can be developed independently of one another, allowing for natural parallelism between teams (resources permitting). This parallelism can accelerate the development activities significantly; but it also increases the complexity of resource management and workflow synchronization. A robust architecture is essential if any significant parallelism is to be achieved.

1.2.2.2 Essential Activities

· Resource management, control and process optimization

· Complete component development and testing against the defined evaluation criteria

· Assessment of product releases against acceptance criteria for the vision.

At the Initial Operational Capability Milestone, the product is ready to be handed over to the Transition Team. All functionality has been developed and all alpha testing (if any) has been completed. In addition to the software, a user manual has been developed, and there is a description of the current release.

1.2.2.3 Evaluation Criteria

The evaluation criteria for the construction phase involve the answers to these questions:

· Is this product release stable and mature enough to be deployed in the user community?

· Are all the stakeholders ready for the transition into the user community?

· Are actual resource expenditures versus planned still acceptable?

Transition may have to be postponed by one release if the project fails to reach this milestone.

1.2.2.4 Artefacts

· The Regnet system: The executable system itself, ready to begin "beta" testing.

· Deployment plan: Initial version developed, reviewed and baselined.

· Implementation model: Expanded from that created during the elaboration phase; all components created by the end of the construction phase.

· Test model: Tests designed and developed to validate executable releases created during the construction phase.

· Training materials: User Manuals and other training materials. Preliminary draft, based on use cases.

· Tools: The tools used to support the work in Construction are installed.

· Data Model: Updated with all elements needed to support the persistence implementation (e.g. tables, indexes, object-to-relational mappings, etc.)

2 Core System Design [VALT]

2.1 Architecture overview

The Software Architecture Document provides a comprehensive architectural overview of the system, using a number of different architectural views to depict different aspects of the system.

As explained in deliverable D2 from WP1, the architecture is based on Web Services approach.
2.2 Interfaces

This part explain interfaces of each Recgnet building blocks. That is all services provides by a sub-system to other sub-systems.

2.2.1 REGNET Portal [MOT]

2.2.1.1 Data Generation [SPAC]

2.2.1.2 Search and Retrieval [AIT]

2.2.1.3 E-Business [ZEUS]

2.2.2 Cultural heritage data management [SPAC]

2.2.2.1 Repository management [SPAC]

2.2.2.2 Reference system [AIT]

2.2.3 E-Business data management [ZEUS]

2.2.3.1 Catalogue management [ZEUS]

2.2.3.2 Procurement and Delivery [VALT]

2.2.4 Knowledge Base Access [SI]

2.2.5 Electronic publisher [SR]
2.3 Tools and Platform

3 Prototypes

Prototypes are used in a directed way to reduce risk.

Evolutionary prototypes, as their name implies, evolve from one iteration to the next. While not initially production quality, their code tends to be reworked as the product evolves. In order to keep rework manageable, they tend to be more formally designed and somewhat formally tested even in the early stages. As the product evolves, testing becomes formalized, as usually does design.

3.1 Portal + J2EE/SOAP + PHP/SOAP [MOT, ZEUS, VALT]

3.1.1 Scope

3.1.2 Architecture

3.1.3 Conclusion

3.2 EbXML Message [VALT]

3.2.1 Scope

3.2.2 Architecture

3.2.3 Conclusion

3.3 TopicMap [TARX, SI]

3.3.1 Scope

3.3.2 Architecture

3.3.3 Conclusion

3.4 Search and Retrieval [AIT]

3.4.1 Scope

3.4.2 Architecture

3.4.3 Conclusion

3.5 CatXML [ZEUS]

3.5.1 Scope

3.5.2 Architecture

3.5.3 Conclusion

3.6 WAP [MOT]

3.6.1 Scope

3.6.2 Architecture

3.6.3 Conclusion

3.7 Publication [SR]

3.7.1 Scope

3.7.2 Architecture

3.7.3 Conclusion

4 Design Model [VALT]

The design model is an object model describing the realization of use cases, and serves as an abstraction of the implementation model and its source code. The design model is used as essential input to activities in implementation and test.

4.1 Purpose

This report describes the design model comprehensively, in terms of how the model is structured into packages and what classes are in the model. If you are using packages, the document shows the model structure hierarchically. The report can be used to describe the entire design model at different stages:

· During elaboration, such as when you have identified the first classes and their objects.

· During construction, when the design is complete.

This report is used by various people interested in the design model, such as the software architect, use-case designers, designers, testers, reviewers, and managers.

4.2 Brief Outline

4.2.1 Introduction

An Introduction to the design model.

4.2.2 Design-Model Hierarchy

This section presents the design packages hierarchically, explains the dependencies among them, and shows the content of each package recursively.

If the model has several levels of packages, those at the top-level are presented first. The packages within these are presented next, and so on, all the way down to the packages at the bottom of the hierarchy. For each package include:

· Its Name.

· A Brief Description.

· A list of the classes owned by the package, including the name and a brief description of each class.

· A list of the relationships owned by the package, including the name and a brief description of each relationship.

· A list of the packages directly owned by the package, with each package presented in the same hierarchical manner as above.

4.2.3 Diagrams of the Design Model

The diagrams, primarily class diagrams, of the entire design model are included here. Note: These diagrams are not related to the use-case realizations or the architectural views of the model.

4.3 REGNET Portal [MOT]

4.3.1 Data Generation [SPAC]

4.3.1.1 Introduction

4.3.1.2 Design model hierarchy

4.3.1.3 Diagrams of the design model

4.3.2 Search and Retrieval [AIT]

4.3.2.1 Introduction

4.3.2.2 Design model hierarchy

4.3.2.3 Diagrams of the design model

4.3.3 E-Business [ZEUS]

4.3.3.1 Introduction

4.3.3.2 Design model hierarchy

4.3.3.3 Diagrams of the design model

4.4 Cultural heritage data management [SPAC]

4.4.1 Repository management [SPAC]

4.4.1.1 Introduction

4.4.1.2 Design model hierarchy

4.4.1.3 Diagrams of the design model

4.4.2 Reference system [AIT]

4.4.2.1 Introduction

4.4.2.2 Design model hierarchy

4.4.2.3 Diagrams of the design model

4.5 E-Business data management [ZEUS]

4.5.1 Catalogue management [ZEUS]

4.5.1.1 Introduction

4.5.1.2 Design model hierarchy

4.5.1.3 Diagrams of the design model

4.5.2 Procurement and Delivery [VALT]

4.5.2.1 Introduction

4.5.2.2 Design model hierarchy

4.5.2.3 Diagrams of the design model

4.6 Knowledge Base Access [SI]

4.6.1 Introduction

4.6.2 Design model hierarchy

4.6.3 Diagrams of the design model

4.7 Electronic publisher [SR]

4.7.1 Introduction

4.7.2 Design model hierarchy

4.7.3 Diagrams of the design model

5 Data Model

The data model is a subset of the implementation model which describes the logical and physical representation of persistent data in the system. It also includes any behavior defined in the database, such as stored procedures, triggers, constraints, etc.

The data model is used to describe the logical and possibly physical structure of the persistent information managed by the system. The data model is specifically needed where the persistent data structure cannot be automatically and mechanically derived from the structure of persistent classes in the design model. It is used to define the mapping between persistent design classes and persistent data structures, and to define the persistent data structures themselves. It is most frequently needed when the design model is an object model and the persistent storage mechanism is based upon a relational database, although it is generally needed whenever the persistent storage mechanism is based upon some non-object-oriented technology.

The data model UML representation is a top-level Package stereotyped as «data model», containing a set of Components which represent the physical storage of persistent data in the system.

5.1.1 Data model hierarchy

5.1.2 Diagrams of the data model

6 Implementation Model [VALT]

The implementation model is a collection of components, and the implementation subsystems that contain them. Components include both deliverable components, such as executables, and components from which the deliverables are produced, such as source code files.

The implementation model is a composite, comprehensive artifact which encompasses all artifacts needed to build and manage the system in the run-time environment.

6.1 Overview
[This subsection names and defines the various layers and their contents, the rules that govern the inclusion to a given layer, and the boundaries between layers. Include a component diagram that shows the relations between layers.]

6.2 Layers
[For each layer, include a subsection with its name, an enumeration of the subsystems located in the layer, and a component diagram.]

7 Deployment Plan [AIT]

The Deployment Plan describes the set of tasks necessary to install and test the developed product such that it can be effectively transitioned to the user community.

7.1 Deployment Planning
[Describe all activities performed in deploying the product to the customer. Activities include planning, beta testing, preparing items to be delivered, packaging, shipping, installation, training, and support.]

7.1.1 Responsibilities

[Identify the responsibilities of both the customer and the development team in preparing for deployment. Of particular relevance in this section is the description of the customer’s involvement in acceptance tests and the process for handling any discrepancies.]

7.1.2 Schedule

[Describe the schedule and milestones to conduct the deployment activities. Deployment milestones need to conform to the project milestones.

Take into account the following Deployment workflow details:

· Planning the Deployment
· Developing the Supporting Material

· Managing the Acceptance Tests

· Acceptance Testing at the Development Site

· Acceptance Testing at the Deployment Site

· Producing the Deployment Unit

· Managing the Beta Program

· Managing the Product Mass Production and Packaging

· Making the Product Accessible Over the Internet]

7.2 Resources

[List the resources and their sources required to carry out the planned deployment activities.]

7.2.1 Facilities

[As applicable, describe the facilities required to test and deploy the software. Facilities may include special buildings or rooms with raised flooring, power requirements, and special features to support privacy and security requirements.]

7.2.2 Hardware

[Identify the hardware required to run and support the software. Specify model, versions, and configurations. Provide information about manufacturer support and licensing.]

7.2.3 The Deployment Unit

[List the software and documentation provided as part of the deliverable product.]

7.2.3.1 Support Software

[As applicable, describe all software needed to support the deliverable product, such as tools, compilers, test tools, test data, utilities, Configuration Management tools, databases, data files, and so on.]

7.2.3.2 Support Documentation

[As applicable, describe the documentation required to support the delivered product, including design descriptions, test cases and procedures, user manuals, and so on.]

7.2.3.3 Support Personnel

[As applicable, describe the personnel, and their skill levels, required to support the deliverable product.]

7.3 Training

[Describe the plan and inputs for training the end users such that they can use and adapt the product as required.]

 � �

rn_ir14v07_spec_mot_contribute.doc
REGNET IST-2000-26336
Page 14 of 14

[image: image2.png]nformation
society
technologies

